MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcls Structured version   Visualization version   GIF version

Theorem restcls 21792
Description: A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
restcls ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌))

Proof of Theorem restcls
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1132 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐽 ∈ Top)
2 sstr 3978 . . . . . . . 8 ((𝑆𝑌𝑌𝑋) → 𝑆𝑋)
32ancoms 461 . . . . . . 7 ((𝑌𝑋𝑆𝑌) → 𝑆𝑋)
433adant1 1126 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑋)
5 restcls.1 . . . . . . 7 𝑋 = 𝐽
65clscld 21658 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
71, 4, 6syl2anc 586 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
8 eqid 2824 . . . . 5 (((cls‘𝐽)‘𝑆) ∩ 𝑌) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)
9 ineq1 4184 . . . . . 6 (𝑥 = ((cls‘𝐽)‘𝑆) → (𝑥𝑌) = (((cls‘𝐽)‘𝑆) ∩ 𝑌))
109rspceeqv 3641 . . . . 5 ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑌) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) → ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥𝑌))
117, 8, 10sylancl 588 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥𝑌))
12 restcls.2 . . . . . . 7 𝐾 = (𝐽t 𝑌)
1312fveq2i 6676 . . . . . 6 (Clsd‘𝐾) = (Clsd‘(𝐽t 𝑌))
1413eleq2i 2907 . . . . 5 ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘𝐾) ↔ (((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘(𝐽t 𝑌)))
155restcld 21783 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋) → ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘(𝐽t 𝑌)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥𝑌)))
16153adant3 1128 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘(𝐽t 𝑌)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥𝑌)))
1714, 16syl5bb 285 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘𝐾) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥𝑌)))
1811, 17mpbird 259 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘𝐾))
195sscls 21667 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
201, 4, 19syl2anc 586 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
21 simp3 1134 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑌)
2220, 21ssind 4212 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∩ 𝑌))
23 eqid 2824 . . . 4 𝐾 = 𝐾
2423clsss2 21683 . . 3 (((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘𝐾) ∧ 𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∩ 𝑌)) → ((cls‘𝐾)‘𝑆) ⊆ (((cls‘𝐽)‘𝑆) ∩ 𝑌))
2518, 22, 24syl2anc 586 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘𝑆) ⊆ (((cls‘𝐽)‘𝑆) ∩ 𝑌))
2612fveq2i 6676 . . . . . 6 (cls‘𝐾) = (cls‘(𝐽t 𝑌))
2726fveq1i 6674 . . . . 5 ((cls‘𝐾)‘𝑆) = ((cls‘(𝐽t 𝑌))‘𝑆)
28 id 22 . . . . . . . . 9 (𝑌𝑋𝑌𝑋)
295topopn 21517 . . . . . . . . 9 (𝐽 ∈ Top → 𝑋𝐽)
30 ssexg 5230 . . . . . . . . 9 ((𝑌𝑋𝑋𝐽) → 𝑌 ∈ V)
3128, 29, 30syl2anr 598 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 ∈ V)
32 resttop 21771 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (𝐽t 𝑌) ∈ Top)
3331, 32syldan 593 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ Top)
34333adant3 1128 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝐽t 𝑌) ∈ Top)
355restuni 21773 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 = (𝐽t 𝑌))
36353adant3 1128 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌 = (𝐽t 𝑌))
3721, 36sseqtrd 4010 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 (𝐽t 𝑌))
38 eqid 2824 . . . . . . 7 (𝐽t 𝑌) = (𝐽t 𝑌)
3938clscld 21658 . . . . . 6 (((𝐽t 𝑌) ∈ Top ∧ 𝑆 (𝐽t 𝑌)) → ((cls‘(𝐽t 𝑌))‘𝑆) ∈ (Clsd‘(𝐽t 𝑌)))
4034, 37, 39syl2anc 586 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘(𝐽t 𝑌))‘𝑆) ∈ (Clsd‘(𝐽t 𝑌)))
4127, 40eqeltrid 2920 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘(𝐽t 𝑌)))
425restcld 21783 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (((cls‘𝐾)‘𝑆) ∈ (Clsd‘(𝐽t 𝑌)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)((cls‘𝐾)‘𝑆) = (𝑥𝑌)))
43423adant3 1128 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((cls‘𝐾)‘𝑆) ∈ (Clsd‘(𝐽t 𝑌)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)((cls‘𝐾)‘𝑆) = (𝑥𝑌)))
4441, 43mpbid 234 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ∃𝑥 ∈ (Clsd‘𝐽)((cls‘𝐾)‘𝑆) = (𝑥𝑌))
4512, 33eqeltrid 2920 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐾 ∈ Top)
46453adant3 1128 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐾 ∈ Top)
4712unieqi 4854 . . . . . . . . 9 𝐾 = (𝐽t 𝑌)
4847eqcomi 2833 . . . . . . . 8 (𝐽t 𝑌) = 𝐾
4948sscls 21667 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑆 (𝐽t 𝑌)) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
5046, 37, 49syl2anc 586 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
5150adantr 483 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥𝑌))) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
52 inss1 4208 . . . . . . 7 (𝑥𝑌) ⊆ 𝑥
53 sseq1 3995 . . . . . . 7 (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → (((cls‘𝐾)‘𝑆) ⊆ 𝑥 ↔ (𝑥𝑌) ⊆ 𝑥))
5452, 53mpbiri 260 . . . . . 6 (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → ((cls‘𝐾)‘𝑆) ⊆ 𝑥)
5554ad2antll 727 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥𝑌))) → ((cls‘𝐾)‘𝑆) ⊆ 𝑥)
5651, 55sstrd 3980 . . . 4 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥𝑌))) → 𝑆𝑥)
575clsss2 21683 . . . . . . . . . 10 ((𝑥 ∈ (Clsd‘𝐽) ∧ 𝑆𝑥) → ((cls‘𝐽)‘𝑆) ⊆ 𝑥)
5857adantl 484 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑆𝑥)) → ((cls‘𝐽)‘𝑆) ⊆ 𝑥)
5958ssrind 4215 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑆𝑥)) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ (𝑥𝑌))
60 sseq2 3996 . . . . . . . 8 (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆) ↔ (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ (𝑥𝑌)))
6159, 60syl5ibrcom 249 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑆𝑥)) → (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆)))
6261expr 459 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆𝑥 → (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆))))
6362com23 86 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → (𝑆𝑥 → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆))))
6463impr 457 . . . 4 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥𝑌))) → (𝑆𝑥 → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆)))
6556, 64mpd 15 . . 3 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥𝑌))) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆))
6644, 65rexlimddv 3294 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆))
6725, 66eqssd 3987 1 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wrex 3142  Vcvv 3497  cin 3938  wss 3939   cuni 4841  cfv 6358  (class class class)co 7159  t crest 16697  Topctop 21504  Clsdccld 21627  clsccl 21629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-oadd 8109  df-er 8292  df-en 8513  df-fin 8516  df-fi 8878  df-rest 16699  df-topgen 16720  df-top 21505  df-topon 21522  df-bases 21557  df-cld 21630  df-cls 21632
This theorem is referenced by:  restlp  21794  resscdrg  23964
  Copyright terms: Public domain W3C validator