MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcls Structured version   Visualization version   GIF version

Theorem restcls 23068
Description: A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
restcls ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌))

Proof of Theorem restcls
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐽 ∈ Top)
2 sstr 3955 . . . . . . . 8 ((𝑆𝑌𝑌𝑋) → 𝑆𝑋)
32ancoms 458 . . . . . . 7 ((𝑌𝑋𝑆𝑌) → 𝑆𝑋)
433adant1 1130 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑋)
5 restcls.1 . . . . . . 7 𝑋 = 𝐽
65clscld 22934 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
71, 4, 6syl2anc 584 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
8 eqid 2729 . . . . 5 (((cls‘𝐽)‘𝑆) ∩ 𝑌) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)
9 ineq1 4176 . . . . . 6 (𝑥 = ((cls‘𝐽)‘𝑆) → (𝑥𝑌) = (((cls‘𝐽)‘𝑆) ∩ 𝑌))
109rspceeqv 3611 . . . . 5 ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑌) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) → ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥𝑌))
117, 8, 10sylancl 586 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥𝑌))
12 restcls.2 . . . . . . 7 𝐾 = (𝐽t 𝑌)
1312fveq2i 6861 . . . . . 6 (Clsd‘𝐾) = (Clsd‘(𝐽t 𝑌))
1413eleq2i 2820 . . . . 5 ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘𝐾) ↔ (((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘(𝐽t 𝑌)))
155restcld 23059 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋) → ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘(𝐽t 𝑌)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥𝑌)))
16153adant3 1132 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘(𝐽t 𝑌)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥𝑌)))
1714, 16bitrid 283 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘𝐾) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥𝑌)))
1811, 17mpbird 257 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘𝐾))
195sscls 22943 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
201, 4, 19syl2anc 584 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
21 simp3 1138 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑌)
2220, 21ssind 4204 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∩ 𝑌))
23 eqid 2729 . . . 4 𝐾 = 𝐾
2423clsss2 22959 . . 3 (((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘𝐾) ∧ 𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∩ 𝑌)) → ((cls‘𝐾)‘𝑆) ⊆ (((cls‘𝐽)‘𝑆) ∩ 𝑌))
2518, 22, 24syl2anc 584 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘𝑆) ⊆ (((cls‘𝐽)‘𝑆) ∩ 𝑌))
2612fveq2i 6861 . . . . . 6 (cls‘𝐾) = (cls‘(𝐽t 𝑌))
2726fveq1i 6859 . . . . 5 ((cls‘𝐾)‘𝑆) = ((cls‘(𝐽t 𝑌))‘𝑆)
28 id 22 . . . . . . . . 9 (𝑌𝑋𝑌𝑋)
295topopn 22793 . . . . . . . . 9 (𝐽 ∈ Top → 𝑋𝐽)
30 ssexg 5278 . . . . . . . . 9 ((𝑌𝑋𝑋𝐽) → 𝑌 ∈ V)
3128, 29, 30syl2anr 597 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 ∈ V)
32 resttop 23047 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (𝐽t 𝑌) ∈ Top)
3331, 32syldan 591 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ Top)
34333adant3 1132 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝐽t 𝑌) ∈ Top)
355restuni 23049 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 = (𝐽t 𝑌))
36353adant3 1132 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌 = (𝐽t 𝑌))
3721, 36sseqtrd 3983 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 (𝐽t 𝑌))
38 eqid 2729 . . . . . . 7 (𝐽t 𝑌) = (𝐽t 𝑌)
3938clscld 22934 . . . . . 6 (((𝐽t 𝑌) ∈ Top ∧ 𝑆 (𝐽t 𝑌)) → ((cls‘(𝐽t 𝑌))‘𝑆) ∈ (Clsd‘(𝐽t 𝑌)))
4034, 37, 39syl2anc 584 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘(𝐽t 𝑌))‘𝑆) ∈ (Clsd‘(𝐽t 𝑌)))
4127, 40eqeltrid 2832 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘(𝐽t 𝑌)))
425restcld 23059 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (((cls‘𝐾)‘𝑆) ∈ (Clsd‘(𝐽t 𝑌)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)((cls‘𝐾)‘𝑆) = (𝑥𝑌)))
43423adant3 1132 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((cls‘𝐾)‘𝑆) ∈ (Clsd‘(𝐽t 𝑌)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)((cls‘𝐾)‘𝑆) = (𝑥𝑌)))
4441, 43mpbid 232 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ∃𝑥 ∈ (Clsd‘𝐽)((cls‘𝐾)‘𝑆) = (𝑥𝑌))
4512, 33eqeltrid 2832 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐾 ∈ Top)
46453adant3 1132 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐾 ∈ Top)
4712unieqi 4883 . . . . . . . . 9 𝐾 = (𝐽t 𝑌)
4847eqcomi 2738 . . . . . . . 8 (𝐽t 𝑌) = 𝐾
4948sscls 22943 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑆 (𝐽t 𝑌)) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
5046, 37, 49syl2anc 584 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
5150adantr 480 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥𝑌))) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
52 inss1 4200 . . . . . . 7 (𝑥𝑌) ⊆ 𝑥
53 sseq1 3972 . . . . . . 7 (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → (((cls‘𝐾)‘𝑆) ⊆ 𝑥 ↔ (𝑥𝑌) ⊆ 𝑥))
5452, 53mpbiri 258 . . . . . 6 (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → ((cls‘𝐾)‘𝑆) ⊆ 𝑥)
5554ad2antll 729 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥𝑌))) → ((cls‘𝐾)‘𝑆) ⊆ 𝑥)
5651, 55sstrd 3957 . . . 4 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥𝑌))) → 𝑆𝑥)
575clsss2 22959 . . . . . . . . . 10 ((𝑥 ∈ (Clsd‘𝐽) ∧ 𝑆𝑥) → ((cls‘𝐽)‘𝑆) ⊆ 𝑥)
5857adantl 481 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑆𝑥)) → ((cls‘𝐽)‘𝑆) ⊆ 𝑥)
5958ssrind 4207 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑆𝑥)) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ (𝑥𝑌))
60 sseq2 3973 . . . . . . . 8 (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆) ↔ (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ (𝑥𝑌)))
6159, 60syl5ibrcom 247 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑆𝑥)) → (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆)))
6261expr 456 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆𝑥 → (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆))))
6362com23 86 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → (𝑆𝑥 → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆))))
6463impr 454 . . . 4 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥𝑌))) → (𝑆𝑥 → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆)))
6556, 64mpd 15 . . 3 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥𝑌))) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆))
6644, 65rexlimddv 3140 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆))
6725, 66eqssd 3964 1 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  cin 3913  wss 3914   cuni 4871  cfv 6511  (class class class)co 7387  t crest 17383  Topctop 22780  Clsdccld 22903  clsccl 22905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-en 8919  df-fin 8922  df-fi 9362  df-rest 17385  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-cls 22908
This theorem is referenced by:  restlp  23070  resscdrg  25258  restcls2  48902
  Copyright terms: Public domain W3C validator