Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcls Structured version   Visualization version   GIF version

Theorem restcls 21789
 Description: A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
restcls ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌))

Proof of Theorem restcls
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐽 ∈ Top)
2 sstr 3926 . . . . . . . 8 ((𝑆𝑌𝑌𝑋) → 𝑆𝑋)
32ancoms 462 . . . . . . 7 ((𝑌𝑋𝑆𝑌) → 𝑆𝑋)
433adant1 1127 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑋)
5 restcls.1 . . . . . . 7 𝑋 = 𝐽
65clscld 21655 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
71, 4, 6syl2anc 587 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
8 eqid 2801 . . . . 5 (((cls‘𝐽)‘𝑆) ∩ 𝑌) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)
9 ineq1 4134 . . . . . 6 (𝑥 = ((cls‘𝐽)‘𝑆) → (𝑥𝑌) = (((cls‘𝐽)‘𝑆) ∩ 𝑌))
109rspceeqv 3589 . . . . 5 ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑌) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) → ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥𝑌))
117, 8, 10sylancl 589 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥𝑌))
12 restcls.2 . . . . . . 7 𝐾 = (𝐽t 𝑌)
1312fveq2i 6652 . . . . . 6 (Clsd‘𝐾) = (Clsd‘(𝐽t 𝑌))
1413eleq2i 2884 . . . . 5 ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘𝐾) ↔ (((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘(𝐽t 𝑌)))
155restcld 21780 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋) → ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘(𝐽t 𝑌)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥𝑌)))
16153adant3 1129 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘(𝐽t 𝑌)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥𝑌)))
1714, 16syl5bb 286 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘𝐾) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥𝑌)))
1811, 17mpbird 260 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘𝐾))
195sscls 21664 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
201, 4, 19syl2anc 587 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
21 simp3 1135 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑌)
2220, 21ssind 4162 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∩ 𝑌))
23 eqid 2801 . . . 4 𝐾 = 𝐾
2423clsss2 21680 . . 3 (((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘𝐾) ∧ 𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∩ 𝑌)) → ((cls‘𝐾)‘𝑆) ⊆ (((cls‘𝐽)‘𝑆) ∩ 𝑌))
2518, 22, 24syl2anc 587 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘𝑆) ⊆ (((cls‘𝐽)‘𝑆) ∩ 𝑌))
2612fveq2i 6652 . . . . . 6 (cls‘𝐾) = (cls‘(𝐽t 𝑌))
2726fveq1i 6650 . . . . 5 ((cls‘𝐾)‘𝑆) = ((cls‘(𝐽t 𝑌))‘𝑆)
28 id 22 . . . . . . . . 9 (𝑌𝑋𝑌𝑋)
295topopn 21514 . . . . . . . . 9 (𝐽 ∈ Top → 𝑋𝐽)
30 ssexg 5194 . . . . . . . . 9 ((𝑌𝑋𝑋𝐽) → 𝑌 ∈ V)
3128, 29, 30syl2anr 599 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 ∈ V)
32 resttop 21768 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (𝐽t 𝑌) ∈ Top)
3331, 32syldan 594 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ Top)
34333adant3 1129 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝐽t 𝑌) ∈ Top)
355restuni 21770 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 = (𝐽t 𝑌))
36353adant3 1129 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌 = (𝐽t 𝑌))
3721, 36sseqtrd 3958 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 (𝐽t 𝑌))
38 eqid 2801 . . . . . . 7 (𝐽t 𝑌) = (𝐽t 𝑌)
3938clscld 21655 . . . . . 6 (((𝐽t 𝑌) ∈ Top ∧ 𝑆 (𝐽t 𝑌)) → ((cls‘(𝐽t 𝑌))‘𝑆) ∈ (Clsd‘(𝐽t 𝑌)))
4034, 37, 39syl2anc 587 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘(𝐽t 𝑌))‘𝑆) ∈ (Clsd‘(𝐽t 𝑌)))
4127, 40eqeltrid 2897 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘(𝐽t 𝑌)))
425restcld 21780 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (((cls‘𝐾)‘𝑆) ∈ (Clsd‘(𝐽t 𝑌)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)((cls‘𝐾)‘𝑆) = (𝑥𝑌)))
43423adant3 1129 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((cls‘𝐾)‘𝑆) ∈ (Clsd‘(𝐽t 𝑌)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)((cls‘𝐾)‘𝑆) = (𝑥𝑌)))
4441, 43mpbid 235 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ∃𝑥 ∈ (Clsd‘𝐽)((cls‘𝐾)‘𝑆) = (𝑥𝑌))
4512, 33eqeltrid 2897 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐾 ∈ Top)
46453adant3 1129 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐾 ∈ Top)
4712unieqi 4816 . . . . . . . . 9 𝐾 = (𝐽t 𝑌)
4847eqcomi 2810 . . . . . . . 8 (𝐽t 𝑌) = 𝐾
4948sscls 21664 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑆 (𝐽t 𝑌)) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
5046, 37, 49syl2anc 587 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
5150adantr 484 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥𝑌))) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
52 inss1 4158 . . . . . . 7 (𝑥𝑌) ⊆ 𝑥
53 sseq1 3943 . . . . . . 7 (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → (((cls‘𝐾)‘𝑆) ⊆ 𝑥 ↔ (𝑥𝑌) ⊆ 𝑥))
5452, 53mpbiri 261 . . . . . 6 (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → ((cls‘𝐾)‘𝑆) ⊆ 𝑥)
5554ad2antll 728 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥𝑌))) → ((cls‘𝐾)‘𝑆) ⊆ 𝑥)
5651, 55sstrd 3928 . . . 4 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥𝑌))) → 𝑆𝑥)
575clsss2 21680 . . . . . . . . . 10 ((𝑥 ∈ (Clsd‘𝐽) ∧ 𝑆𝑥) → ((cls‘𝐽)‘𝑆) ⊆ 𝑥)
5857adantl 485 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑆𝑥)) → ((cls‘𝐽)‘𝑆) ⊆ 𝑥)
5958ssrind 4165 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑆𝑥)) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ (𝑥𝑌))
60 sseq2 3944 . . . . . . . 8 (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆) ↔ (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ (𝑥𝑌)))
6159, 60syl5ibrcom 250 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑆𝑥)) → (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆)))
6261expr 460 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆𝑥 → (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆))))
6362com23 86 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (((cls‘𝐾)‘𝑆) = (𝑥𝑌) → (𝑆𝑥 → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆))))
6463impr 458 . . . 4 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥𝑌))) → (𝑆𝑥 → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆)))
6556, 64mpd 15 . . 3 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥𝑌))) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆))
6644, 65rexlimddv 3253 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆))
6725, 66eqssd 3935 1 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ∃wrex 3110  Vcvv 3444   ∩ cin 3883   ⊆ wss 3884  ∪ cuni 4803  ‘cfv 6328  (class class class)co 7139   ↾t crest 16689  Topctop 21501  Clsdccld 21624  clsccl 21626 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-oadd 8093  df-er 8276  df-en 8497  df-fin 8500  df-fi 8863  df-rest 16691  df-topgen 16712  df-top 21502  df-topon 21519  df-bases 21554  df-cld 21627  df-cls 21629 This theorem is referenced by:  restlp  21791  resscdrg  23965
 Copyright terms: Public domain W3C validator