Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → 𝐽 ∈ Top) |
2 | | sstr 3933 |
. . . . . . . 8
⊢ ((𝑆 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝑋) → 𝑆 ⊆ 𝑋) |
3 | 2 | ancoms 458 |
. . . . . . 7
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → 𝑆 ⊆ 𝑋) |
4 | 3 | 3adant1 1128 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → 𝑆 ⊆ 𝑋) |
5 | | restcls.1 |
. . . . . . 7
⊢ 𝑋 = ∪
𝐽 |
6 | 5 | clscld 22179 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
7 | 1, 4, 6 | syl2anc 583 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
8 | | eqid 2739 |
. . . . 5
⊢
(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (((cls‘𝐽)‘𝑆) ∩ 𝑌) |
9 | | ineq1 4144 |
. . . . . 6
⊢ (𝑥 = ((cls‘𝐽)‘𝑆) → (𝑥 ∩ 𝑌) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
10 | 9 | rspceeqv 3575 |
. . . . 5
⊢
((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑌) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) → ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥 ∩ 𝑌)) |
11 | 7, 8, 10 | sylancl 585 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥 ∩ 𝑌)) |
12 | | restcls.2 |
. . . . . . 7
⊢ 𝐾 = (𝐽 ↾t 𝑌) |
13 | 12 | fveq2i 6771 |
. . . . . 6
⊢
(Clsd‘𝐾) =
(Clsd‘(𝐽
↾t 𝑌)) |
14 | 13 | eleq2i 2831 |
. . . . 5
⊢
((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘𝐾) ↔ (((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘(𝐽 ↾t 𝑌))) |
15 | 5 | restcld 22304 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘(𝐽 ↾t 𝑌)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥 ∩ 𝑌))) |
16 | 15 | 3adant3 1130 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘(𝐽 ↾t 𝑌)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥 ∩ 𝑌))) |
17 | 14, 16 | syl5bb 282 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘𝐾) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∩ 𝑌) = (𝑥 ∩ 𝑌))) |
18 | 11, 17 | mpbird 256 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘𝐾)) |
19 | 5 | sscls 22188 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
20 | 1, 4, 19 | syl2anc 583 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
21 | | simp3 1136 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → 𝑆 ⊆ 𝑌) |
22 | 20, 21 | ssind 4171 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → 𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
23 | | eqid 2739 |
. . . 4
⊢ ∪ 𝐾 =
∪ 𝐾 |
24 | 23 | clsss2 22204 |
. . 3
⊢
(((((cls‘𝐽)‘𝑆) ∩ 𝑌) ∈ (Clsd‘𝐾) ∧ 𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∩ 𝑌)) → ((cls‘𝐾)‘𝑆) ⊆ (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
25 | 18, 22, 24 | syl2anc 583 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐾)‘𝑆) ⊆ (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |
26 | 12 | fveq2i 6771 |
. . . . . 6
⊢
(cls‘𝐾) =
(cls‘(𝐽
↾t 𝑌)) |
27 | 26 | fveq1i 6769 |
. . . . 5
⊢
((cls‘𝐾)‘𝑆) = ((cls‘(𝐽 ↾t 𝑌))‘𝑆) |
28 | | id 22 |
. . . . . . . . 9
⊢ (𝑌 ⊆ 𝑋 → 𝑌 ⊆ 𝑋) |
29 | 5 | topopn 22036 |
. . . . . . . . 9
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
30 | | ssexg 5250 |
. . . . . . . . 9
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝑌 ∈ V) |
31 | 28, 29, 30 | syl2anr 596 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ V) |
32 | | resttop 22292 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (𝐽 ↾t 𝑌) ∈ Top) |
33 | 31, 32 | syldan 590 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) ∈ Top) |
34 | 33 | 3adant3 1130 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → (𝐽 ↾t 𝑌) ∈ Top) |
35 | 5 | restuni 22294 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
36 | 35 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
37 | 21, 36 | sseqtrd 3965 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → 𝑆 ⊆ ∪ (𝐽 ↾t 𝑌)) |
38 | | eqid 2739 |
. . . . . . 7
⊢ ∪ (𝐽
↾t 𝑌) =
∪ (𝐽 ↾t 𝑌) |
39 | 38 | clscld 22179 |
. . . . . 6
⊢ (((𝐽 ↾t 𝑌) ∈ Top ∧ 𝑆 ⊆ ∪ (𝐽
↾t 𝑌))
→ ((cls‘(𝐽
↾t 𝑌))‘𝑆) ∈ (Clsd‘(𝐽 ↾t 𝑌))) |
40 | 34, 37, 39 | syl2anc 583 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((cls‘(𝐽 ↾t 𝑌))‘𝑆) ∈ (Clsd‘(𝐽 ↾t 𝑌))) |
41 | 27, 40 | eqeltrid 2844 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘(𝐽 ↾t 𝑌))) |
42 | 5 | restcld 22304 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (((cls‘𝐾)‘𝑆) ∈ (Clsd‘(𝐽 ↾t 𝑌)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)((cls‘𝐾)‘𝑆) = (𝑥 ∩ 𝑌))) |
43 | 42 | 3adant3 1130 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → (((cls‘𝐾)‘𝑆) ∈ (Clsd‘(𝐽 ↾t 𝑌)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)((cls‘𝐾)‘𝑆) = (𝑥 ∩ 𝑌))) |
44 | 41, 43 | mpbid 231 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ∃𝑥 ∈ (Clsd‘𝐽)((cls‘𝐾)‘𝑆) = (𝑥 ∩ 𝑌)) |
45 | 12, 33 | eqeltrid 2844 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → 𝐾 ∈ Top) |
46 | 45 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → 𝐾 ∈ Top) |
47 | 12 | unieqi 4857 |
. . . . . . . . 9
⊢ ∪ 𝐾 =
∪ (𝐽 ↾t 𝑌) |
48 | 47 | eqcomi 2748 |
. . . . . . . 8
⊢ ∪ (𝐽
↾t 𝑌) =
∪ 𝐾 |
49 | 48 | sscls 22188 |
. . . . . . 7
⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ ∪ (𝐽
↾t 𝑌))
→ 𝑆 ⊆
((cls‘𝐾)‘𝑆)) |
50 | 46, 37, 49 | syl2anc 583 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆)) |
51 | 50 | adantr 480 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥 ∩ 𝑌))) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆)) |
52 | | inss1 4167 |
. . . . . . 7
⊢ (𝑥 ∩ 𝑌) ⊆ 𝑥 |
53 | | sseq1 3950 |
. . . . . . 7
⊢
(((cls‘𝐾)‘𝑆) = (𝑥 ∩ 𝑌) → (((cls‘𝐾)‘𝑆) ⊆ 𝑥 ↔ (𝑥 ∩ 𝑌) ⊆ 𝑥)) |
54 | 52, 53 | mpbiri 257 |
. . . . . 6
⊢
(((cls‘𝐾)‘𝑆) = (𝑥 ∩ 𝑌) → ((cls‘𝐾)‘𝑆) ⊆ 𝑥) |
55 | 54 | ad2antll 725 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥 ∩ 𝑌))) → ((cls‘𝐾)‘𝑆) ⊆ 𝑥) |
56 | 51, 55 | sstrd 3935 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥 ∩ 𝑌))) → 𝑆 ⊆ 𝑥) |
57 | 5 | clsss2 22204 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑥) → ((cls‘𝐽)‘𝑆) ⊆ 𝑥) |
58 | 57 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑥)) → ((cls‘𝐽)‘𝑆) ⊆ 𝑥) |
59 | 58 | ssrind 4174 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑥)) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ (𝑥 ∩ 𝑌)) |
60 | | sseq2 3951 |
. . . . . . . 8
⊢
(((cls‘𝐾)‘𝑆) = (𝑥 ∩ 𝑌) → ((((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆) ↔ (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ (𝑥 ∩ 𝑌))) |
61 | 59, 60 | syl5ibrcom 246 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑥)) → (((cls‘𝐾)‘𝑆) = (𝑥 ∩ 𝑌) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆))) |
62 | 61 | expr 456 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆 ⊆ 𝑥 → (((cls‘𝐾)‘𝑆) = (𝑥 ∩ 𝑌) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆)))) |
63 | 62 | com23 86 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (((cls‘𝐾)‘𝑆) = (𝑥 ∩ 𝑌) → (𝑆 ⊆ 𝑥 → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆)))) |
64 | 63 | impr 454 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥 ∩ 𝑌))) → (𝑆 ⊆ 𝑥 → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆))) |
65 | 56, 64 | mpd 15 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ ((cls‘𝐾)‘𝑆) = (𝑥 ∩ 𝑌))) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆)) |
66 | 44, 65 | rexlimddv 3221 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → (((cls‘𝐽)‘𝑆) ∩ 𝑌) ⊆ ((cls‘𝐾)‘𝑆)) |
67 | 25, 66 | eqssd 3942 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐾)‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) |