| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmdisj | Structured version Visualization version GIF version | ||
| Description: Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
| lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| lsmdisj.o | ⊢ 0 = (0g‘𝐺) |
| lsmdisj.i | ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) |
| Ref | Expression |
|---|---|
| lsmdisj | ⊢ (𝜑 → ((𝑆 ∩ 𝑈) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 2 | lsmcntz.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 3 | lsmcntz.p | . . . . . . 7 ⊢ ⊕ = (LSSum‘𝐺) | |
| 4 | 3 | lsmub1 19593 | . . . . . 6 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 ⊕ 𝑇)) |
| 5 | 1, 2, 4 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (𝑆 ⊕ 𝑇)) |
| 6 | 5 | ssrind 4215 | . . . 4 ⊢ (𝜑 → (𝑆 ∩ 𝑈) ⊆ ((𝑆 ⊕ 𝑇) ∩ 𝑈)) |
| 7 | lsmdisj.i | . . . 4 ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) | |
| 8 | 6, 7 | sseqtrd 3991 | . . 3 ⊢ (𝜑 → (𝑆 ∩ 𝑈) ⊆ { 0 }) |
| 9 | lsmdisj.o | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
| 10 | 9 | subg0cl 19072 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) |
| 11 | 1, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝑆) |
| 12 | lsmcntz.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 13 | 9 | subg0cl 19072 | . . . . . 6 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑈) |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝑈) |
| 15 | 11, 14 | elind 4171 | . . . 4 ⊢ (𝜑 → 0 ∈ (𝑆 ∩ 𝑈)) |
| 16 | 15 | snssd 4781 | . . 3 ⊢ (𝜑 → { 0 } ⊆ (𝑆 ∩ 𝑈)) |
| 17 | 8, 16 | eqssd 3972 | . 2 ⊢ (𝜑 → (𝑆 ∩ 𝑈) = { 0 }) |
| 18 | 3 | lsmub2 19594 | . . . . . 6 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (𝑆 ⊕ 𝑇)) |
| 19 | 1, 2, 18 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ (𝑆 ⊕ 𝑇)) |
| 20 | 19 | ssrind 4215 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑈) ⊆ ((𝑆 ⊕ 𝑇) ∩ 𝑈)) |
| 21 | 20, 7 | sseqtrd 3991 | . . 3 ⊢ (𝜑 → (𝑇 ∩ 𝑈) ⊆ { 0 }) |
| 22 | 9 | subg0cl 19072 | . . . . . 6 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑇) |
| 23 | 2, 22 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝑇) |
| 24 | 23, 14 | elind 4171 | . . . 4 ⊢ (𝜑 → 0 ∈ (𝑇 ∩ 𝑈)) |
| 25 | 24 | snssd 4781 | . . 3 ⊢ (𝜑 → { 0 } ⊆ (𝑇 ∩ 𝑈)) |
| 26 | 21, 25 | eqssd 3972 | . 2 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
| 27 | 17, 26 | jca 511 | 1 ⊢ (𝜑 → ((𝑆 ∩ 𝑈) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3921 ⊆ wss 3922 {csn 4597 ‘cfv 6519 (class class class)co 7394 0gc0g 17408 SubGrpcsubg 19058 LSSumclsm 19570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-grp 18874 df-minusg 18875 df-subg 19061 df-lsm 19572 |
| This theorem is referenced by: lsmdisjr 19620 lsmdisj2a 19623 lsmdisj2b 19624 |
| Copyright terms: Public domain | W3C validator |