| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmdisj | Structured version Visualization version GIF version | ||
| Description: Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
| lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| lsmdisj.o | ⊢ 0 = (0g‘𝐺) |
| lsmdisj.i | ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) |
| Ref | Expression |
|---|---|
| lsmdisj | ⊢ (𝜑 → ((𝑆 ∩ 𝑈) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 2 | lsmcntz.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 3 | lsmcntz.p | . . . . . . 7 ⊢ ⊕ = (LSSum‘𝐺) | |
| 4 | 3 | lsmub1 19642 | . . . . . 6 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 ⊕ 𝑇)) |
| 5 | 1, 2, 4 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (𝑆 ⊕ 𝑇)) |
| 6 | 5 | ssrind 4224 | . . . 4 ⊢ (𝜑 → (𝑆 ∩ 𝑈) ⊆ ((𝑆 ⊕ 𝑇) ∩ 𝑈)) |
| 7 | lsmdisj.i | . . . 4 ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) | |
| 8 | 6, 7 | sseqtrd 4000 | . . 3 ⊢ (𝜑 → (𝑆 ∩ 𝑈) ⊆ { 0 }) |
| 9 | lsmdisj.o | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
| 10 | 9 | subg0cl 19120 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) |
| 11 | 1, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝑆) |
| 12 | lsmcntz.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 13 | 9 | subg0cl 19120 | . . . . . 6 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑈) |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝑈) |
| 15 | 11, 14 | elind 4180 | . . . 4 ⊢ (𝜑 → 0 ∈ (𝑆 ∩ 𝑈)) |
| 16 | 15 | snssd 4789 | . . 3 ⊢ (𝜑 → { 0 } ⊆ (𝑆 ∩ 𝑈)) |
| 17 | 8, 16 | eqssd 3981 | . 2 ⊢ (𝜑 → (𝑆 ∩ 𝑈) = { 0 }) |
| 18 | 3 | lsmub2 19643 | . . . . . 6 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (𝑆 ⊕ 𝑇)) |
| 19 | 1, 2, 18 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ (𝑆 ⊕ 𝑇)) |
| 20 | 19 | ssrind 4224 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑈) ⊆ ((𝑆 ⊕ 𝑇) ∩ 𝑈)) |
| 21 | 20, 7 | sseqtrd 4000 | . . 3 ⊢ (𝜑 → (𝑇 ∩ 𝑈) ⊆ { 0 }) |
| 22 | 9 | subg0cl 19120 | . . . . . 6 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑇) |
| 23 | 2, 22 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝑇) |
| 24 | 23, 14 | elind 4180 | . . . 4 ⊢ (𝜑 → 0 ∈ (𝑇 ∩ 𝑈)) |
| 25 | 24 | snssd 4789 | . . 3 ⊢ (𝜑 → { 0 } ⊆ (𝑇 ∩ 𝑈)) |
| 26 | 21, 25 | eqssd 3981 | . 2 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
| 27 | 17, 26 | jca 511 | 1 ⊢ (𝜑 → ((𝑆 ∩ 𝑈) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∩ cin 3930 ⊆ wss 3931 {csn 4606 ‘cfv 6540 (class class class)co 7412 0gc0g 17454 SubGrpcsubg 19106 LSSumclsm 19619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-0g 17456 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-submnd 18765 df-grp 18922 df-minusg 18923 df-subg 19109 df-lsm 19621 |
| This theorem is referenced by: lsmdisjr 19669 lsmdisj2a 19672 lsmdisj2b 19673 |
| Copyright terms: Public domain | W3C validator |