![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ppisval2 | Structured version Visualization version GIF version |
Description: The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
ppisval2 | ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → ((0[,]𝐴) ∩ ℙ) = ((𝑀...(⌊‘𝐴)) ∩ ℙ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ppisval 27064 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ)) | |
2 | 1 | adantr 479 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ)) |
3 | fzss1 13582 | . . . . 5 ⊢ (2 ∈ (ℤ≥‘𝑀) → (2...(⌊‘𝐴)) ⊆ (𝑀...(⌊‘𝐴))) | |
4 | 3 | adantl 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → (2...(⌊‘𝐴)) ⊆ (𝑀...(⌊‘𝐴))) |
5 | 4 | ssrind 4238 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) |
6 | simpr 483 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) | |
7 | elin 3965 | . . . . . . . 8 ⊢ (𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ) ↔ (𝑥 ∈ (𝑀...(⌊‘𝐴)) ∧ 𝑥 ∈ ℙ)) | |
8 | 6, 7 | sylib 217 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → (𝑥 ∈ (𝑀...(⌊‘𝐴)) ∧ 𝑥 ∈ ℙ)) |
9 | 8 | simprd 494 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ ℙ) |
10 | prmuz2 16676 | . . . . . 6 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ≥‘2)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ (ℤ≥‘2)) |
12 | 8 | simpld 493 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ (𝑀...(⌊‘𝐴))) |
13 | elfzuz3 13540 | . . . . . 6 ⊢ (𝑥 ∈ (𝑀...(⌊‘𝐴)) → (⌊‘𝐴) ∈ (ℤ≥‘𝑥)) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → (⌊‘𝐴) ∈ (ℤ≥‘𝑥)) |
15 | elfzuzb 13537 | . . . . 5 ⊢ (𝑥 ∈ (2...(⌊‘𝐴)) ↔ (𝑥 ∈ (ℤ≥‘2) ∧ (⌊‘𝐴) ∈ (ℤ≥‘𝑥))) | |
16 | 11, 14, 15 | sylanbrc 581 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ (2...(⌊‘𝐴))) |
17 | 16, 9 | elind 4196 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ)) |
18 | 5, 17 | eqelssd 4003 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → ((2...(⌊‘𝐴)) ∩ ℙ) = ((𝑀...(⌊‘𝐴)) ∩ ℙ)) |
19 | 2, 18 | eqtrd 2768 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → ((0[,]𝐴) ∩ ℙ) = ((𝑀...(⌊‘𝐴)) ∩ ℙ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∩ cin 3948 ⊆ wss 3949 ‘cfv 6553 (class class class)co 7426 ℝcr 11147 0cc0 11148 2c2 12307 ℤ≥cuz 12862 [,]cicc 13369 ...cfz 13526 ⌊cfl 13797 ℙcprime 16651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-2o 8496 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-sup 9475 df-inf 9476 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-3 12316 df-n0 12513 df-z 12599 df-uz 12863 df-rp 13017 df-icc 13373 df-fz 13527 df-fl 13799 df-seq 14009 df-exp 14069 df-cj 15088 df-re 15089 df-im 15090 df-sqrt 15224 df-abs 15225 df-dvds 16241 df-prm 16652 |
This theorem is referenced by: ppival2g 27089 chtdif 27118 prmorcht 27138 chtppilimlem1 27434 |
Copyright terms: Public domain | W3C validator |