Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suppssof1 | Structured version Visualization version GIF version |
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) |
Ref | Expression |
---|---|
suppssof1.s | ⊢ (𝜑 → (𝐴 supp 𝑌) ⊆ 𝐿) |
suppssof1.o | ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) |
suppssof1.a | ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) |
suppssof1.b | ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) |
suppssof1.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
suppssof1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
Ref | Expression |
---|---|
suppssof1 | ⊢ (𝜑 → ((𝐴 ∘f 𝑂𝐵) supp 𝑍) ⊆ 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppssof1.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) | |
2 | 1 | ffnd 6597 | . . . 4 ⊢ (𝜑 → 𝐴 Fn 𝐷) |
3 | suppssof1.b | . . . . 5 ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) | |
4 | 3 | ffnd 6597 | . . . 4 ⊢ (𝜑 → 𝐵 Fn 𝐷) |
5 | suppssof1.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
6 | inidm 4157 | . . . 4 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
7 | eqidd 2740 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) = (𝐴‘𝑥)) | |
8 | eqidd 2740 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐵‘𝑥) = (𝐵‘𝑥)) | |
9 | 2, 4, 5, 5, 6, 7, 8 | offval 7533 | . . 3 ⊢ (𝜑 → (𝐴 ∘f 𝑂𝐵) = (𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥)))) |
10 | 9 | oveq1d 7283 | . 2 ⊢ (𝜑 → ((𝐴 ∘f 𝑂𝐵) supp 𝑍) = ((𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥))) supp 𝑍)) |
11 | 1 | feqmptd 6831 | . . . . 5 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥))) |
12 | 11 | oveq1d 7283 | . . . 4 ⊢ (𝜑 → (𝐴 supp 𝑌) = ((𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥)) supp 𝑌)) |
13 | suppssof1.s | . . . 4 ⊢ (𝜑 → (𝐴 supp 𝑌) ⊆ 𝐿) | |
14 | 12, 13 | eqsstrrd 3964 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥)) supp 𝑌) ⊆ 𝐿) |
15 | suppssof1.o | . . 3 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) | |
16 | fvexd 6783 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ∈ V) | |
17 | 3 | ffvelrnda 6955 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐵‘𝑥) ∈ 𝑅) |
18 | suppssof1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
19 | 14, 15, 16, 17, 18 | suppssov1 7998 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥))) supp 𝑍) ⊆ 𝐿) |
20 | 10, 19 | eqsstrd 3963 | 1 ⊢ (𝜑 → ((𝐴 ∘f 𝑂𝐵) supp 𝑍) ⊆ 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ⊆ wss 3891 ↦ cmpt 5161 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ∘f cof 7522 supp csupp 7961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-supp 7962 |
This theorem is referenced by: frlmup1 20986 psrbagev1 21266 psrbagev1OLD 21267 jensen 26119 offinsupp1 31041 |
Copyright terms: Public domain | W3C validator |