| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssof1 | Structured version Visualization version GIF version | ||
| Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) |
| Ref | Expression |
|---|---|
| suppssof1.s | ⊢ (𝜑 → (𝐴 supp 𝑌) ⊆ 𝐿) |
| suppssof1.o | ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) |
| suppssof1.a | ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) |
| suppssof1.b | ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) |
| suppssof1.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| suppssof1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| suppssof1 | ⊢ (𝜑 → ((𝐴 ∘f 𝑂𝐵) supp 𝑍) ⊆ 𝐿) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssof1.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) | |
| 2 | 1 | ffnd 6660 | . . . 4 ⊢ (𝜑 → 𝐴 Fn 𝐷) |
| 3 | suppssof1.b | . . . . 5 ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) | |
| 4 | 3 | ffnd 6660 | . . . 4 ⊢ (𝜑 → 𝐵 Fn 𝐷) |
| 5 | suppssof1.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
| 6 | inidm 4178 | . . . 4 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
| 7 | eqidd 2734 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) = (𝐴‘𝑥)) | |
| 8 | eqidd 2734 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐵‘𝑥) = (𝐵‘𝑥)) | |
| 9 | 2, 4, 5, 5, 6, 7, 8 | offval 7628 | . . 3 ⊢ (𝜑 → (𝐴 ∘f 𝑂𝐵) = (𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥)))) |
| 10 | 9 | oveq1d 7370 | . 2 ⊢ (𝜑 → ((𝐴 ∘f 𝑂𝐵) supp 𝑍) = ((𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥))) supp 𝑍)) |
| 11 | 1 | feqmptd 6899 | . . . . 5 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥))) |
| 12 | 11 | oveq1d 7370 | . . . 4 ⊢ (𝜑 → (𝐴 supp 𝑌) = ((𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥)) supp 𝑌)) |
| 13 | suppssof1.s | . . . 4 ⊢ (𝜑 → (𝐴 supp 𝑌) ⊆ 𝐿) | |
| 14 | 12, 13 | eqsstrrd 3967 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥)) supp 𝑌) ⊆ 𝐿) |
| 15 | suppssof1.o | . . 3 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) | |
| 16 | fvexd 6846 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ∈ V) | |
| 17 | 3 | ffvelcdmda 7026 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐵‘𝑥) ∈ 𝑅) |
| 18 | suppssof1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 19 | 14, 15, 16, 17, 18 | suppssov1 8136 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥))) supp 𝑍) ⊆ 𝐿) |
| 20 | 10, 19 | eqsstrd 3966 | 1 ⊢ (𝜑 → ((𝐴 ∘f 𝑂𝐵) supp 𝑍) ⊆ 𝐿) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3438 ⊆ wss 3899 ↦ cmpt 5176 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 supp csupp 8099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-supp 8100 |
| This theorem is referenced by: frlmup1 21745 psrbagev1 22022 jensen 26936 offinsupp1 32720 |
| Copyright terms: Public domain | W3C validator |