MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssof1 Structured version   Visualization version   GIF version

Theorem suppssof1 8203
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppssof1.s (𝜑 → (𝐴 supp 𝑌) ⊆ 𝐿)
suppssof1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
suppssof1.a (𝜑𝐴:𝐷𝑉)
suppssof1.b (𝜑𝐵:𝐷𝑅)
suppssof1.d (𝜑𝐷𝑊)
suppssof1.y (𝜑𝑌𝑈)
Assertion
Ref Expression
suppssof1 (𝜑 → ((𝐴f 𝑂𝐵) supp 𝑍) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑣   𝑣,𝐵   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑣,𝑍
Allowed substitution hints:   𝐴(𝑣)   𝐷(𝑣)   𝑈(𝑣)   𝐿(𝑣)   𝑉(𝑣)   𝑊(𝑣)

Proof of Theorem suppssof1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 suppssof1.a . . . . 5 (𝜑𝐴:𝐷𝑉)
21ffnd 6712 . . . 4 (𝜑𝐴 Fn 𝐷)
3 suppssof1.b . . . . 5 (𝜑𝐵:𝐷𝑅)
43ffnd 6712 . . . 4 (𝜑𝐵 Fn 𝐷)
5 suppssof1.d . . . 4 (𝜑𝐷𝑊)
6 inidm 4207 . . . 4 (𝐷𝐷) = 𝐷
7 eqidd 2737 . . . 4 ((𝜑𝑥𝐷) → (𝐴𝑥) = (𝐴𝑥))
8 eqidd 2737 . . . 4 ((𝜑𝑥𝐷) → (𝐵𝑥) = (𝐵𝑥))
92, 4, 5, 5, 6, 7, 8offval 7685 . . 3 (𝜑 → (𝐴f 𝑂𝐵) = (𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))))
109oveq1d 7425 . 2 (𝜑 → ((𝐴f 𝑂𝐵) supp 𝑍) = ((𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))) supp 𝑍))
111feqmptd 6952 . . . . 5 (𝜑𝐴 = (𝑥𝐷 ↦ (𝐴𝑥)))
1211oveq1d 7425 . . . 4 (𝜑 → (𝐴 supp 𝑌) = ((𝑥𝐷 ↦ (𝐴𝑥)) supp 𝑌))
13 suppssof1.s . . . 4 (𝜑 → (𝐴 supp 𝑌) ⊆ 𝐿)
1412, 13eqsstrrd 3999 . . 3 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑥)) supp 𝑌) ⊆ 𝐿)
15 suppssof1.o . . 3 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
16 fvexd 6896 . . 3 ((𝜑𝑥𝐷) → (𝐴𝑥) ∈ V)
173ffvelcdmda 7079 . . 3 ((𝜑𝑥𝐷) → (𝐵𝑥) ∈ 𝑅)
18 suppssof1.y . . 3 (𝜑𝑌𝑈)
1914, 15, 16, 17, 18suppssov1 8201 . 2 (𝜑 → ((𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))) supp 𝑍) ⊆ 𝐿)
2010, 19eqsstrd 3998 1 (𝜑 → ((𝐴f 𝑂𝐵) supp 𝑍) ⊆ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674   supp csupp 8164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-supp 8165
This theorem is referenced by:  frlmup1  21763  psrbagev1  22040  jensen  26956  offinsupp1  32709
  Copyright terms: Public domain W3C validator