MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssof1 Structured version   Visualization version   GIF version

Theorem suppssof1 7941
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppssof1.s (𝜑 → (𝐴 supp 𝑌) ⊆ 𝐿)
suppssof1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
suppssof1.a (𝜑𝐴:𝐷𝑉)
suppssof1.b (𝜑𝐵:𝐷𝑅)
suppssof1.d (𝜑𝐷𝑊)
suppssof1.y (𝜑𝑌𝑈)
Assertion
Ref Expression
suppssof1 (𝜑 → ((𝐴f 𝑂𝐵) supp 𝑍) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑣   𝑣,𝐵   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑣,𝑍
Allowed substitution hints:   𝐴(𝑣)   𝐷(𝑣)   𝑈(𝑣)   𝐿(𝑣)   𝑉(𝑣)   𝑊(𝑣)

Proof of Theorem suppssof1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 suppssof1.a . . . . 5 (𝜑𝐴:𝐷𝑉)
21ffnd 6546 . . . 4 (𝜑𝐴 Fn 𝐷)
3 suppssof1.b . . . . 5 (𝜑𝐵:𝐷𝑅)
43ffnd 6546 . . . 4 (𝜑𝐵 Fn 𝐷)
5 suppssof1.d . . . 4 (𝜑𝐷𝑊)
6 inidm 4133 . . . 4 (𝐷𝐷) = 𝐷
7 eqidd 2738 . . . 4 ((𝜑𝑥𝐷) → (𝐴𝑥) = (𝐴𝑥))
8 eqidd 2738 . . . 4 ((𝜑𝑥𝐷) → (𝐵𝑥) = (𝐵𝑥))
92, 4, 5, 5, 6, 7, 8offval 7477 . . 3 (𝜑 → (𝐴f 𝑂𝐵) = (𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))))
109oveq1d 7228 . 2 (𝜑 → ((𝐴f 𝑂𝐵) supp 𝑍) = ((𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))) supp 𝑍))
111feqmptd 6780 . . . . 5 (𝜑𝐴 = (𝑥𝐷 ↦ (𝐴𝑥)))
1211oveq1d 7228 . . . 4 (𝜑 → (𝐴 supp 𝑌) = ((𝑥𝐷 ↦ (𝐴𝑥)) supp 𝑌))
13 suppssof1.s . . . 4 (𝜑 → (𝐴 supp 𝑌) ⊆ 𝐿)
1412, 13eqsstrrd 3940 . . 3 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑥)) supp 𝑌) ⊆ 𝐿)
15 suppssof1.o . . 3 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
16 fvexd 6732 . . 3 ((𝜑𝑥𝐷) → (𝐴𝑥) ∈ V)
173ffvelrnda 6904 . . 3 ((𝜑𝑥𝐷) → (𝐵𝑥) ∈ 𝑅)
18 suppssof1.y . . 3 (𝜑𝑌𝑈)
1914, 15, 16, 17, 18suppssov1 7940 . 2 (𝜑 → ((𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))) supp 𝑍) ⊆ 𝐿)
2010, 19eqsstrd 3939 1 (𝜑 → ((𝐴f 𝑂𝐵) supp 𝑍) ⊆ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  wss 3866  cmpt 5135  wf 6376  cfv 6380  (class class class)co 7213  f cof 7467   supp csupp 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-supp 7904
This theorem is referenced by:  frlmup1  20760  psrbagev1  21035  psrbagev1OLD  21036  jensen  25871  offinsupp1  30782
  Copyright terms: Public domain W3C validator