| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssof1 | Structured version Visualization version GIF version | ||
| Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) |
| Ref | Expression |
|---|---|
| suppssof1.s | ⊢ (𝜑 → (𝐴 supp 𝑌) ⊆ 𝐿) |
| suppssof1.o | ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) |
| suppssof1.a | ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) |
| suppssof1.b | ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) |
| suppssof1.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| suppssof1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| suppssof1 | ⊢ (𝜑 → ((𝐴 ∘f 𝑂𝐵) supp 𝑍) ⊆ 𝐿) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssof1.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) | |
| 2 | 1 | ffnd 6712 | . . . 4 ⊢ (𝜑 → 𝐴 Fn 𝐷) |
| 3 | suppssof1.b | . . . . 5 ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) | |
| 4 | 3 | ffnd 6712 | . . . 4 ⊢ (𝜑 → 𝐵 Fn 𝐷) |
| 5 | suppssof1.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
| 6 | inidm 4207 | . . . 4 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
| 7 | eqidd 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) = (𝐴‘𝑥)) | |
| 8 | eqidd 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐵‘𝑥) = (𝐵‘𝑥)) | |
| 9 | 2, 4, 5, 5, 6, 7, 8 | offval 7685 | . . 3 ⊢ (𝜑 → (𝐴 ∘f 𝑂𝐵) = (𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥)))) |
| 10 | 9 | oveq1d 7425 | . 2 ⊢ (𝜑 → ((𝐴 ∘f 𝑂𝐵) supp 𝑍) = ((𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥))) supp 𝑍)) |
| 11 | 1 | feqmptd 6952 | . . . . 5 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥))) |
| 12 | 11 | oveq1d 7425 | . . . 4 ⊢ (𝜑 → (𝐴 supp 𝑌) = ((𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥)) supp 𝑌)) |
| 13 | suppssof1.s | . . . 4 ⊢ (𝜑 → (𝐴 supp 𝑌) ⊆ 𝐿) | |
| 14 | 12, 13 | eqsstrrd 3999 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥)) supp 𝑌) ⊆ 𝐿) |
| 15 | suppssof1.o | . . 3 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) | |
| 16 | fvexd 6896 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ∈ V) | |
| 17 | 3 | ffvelcdmda 7079 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐵‘𝑥) ∈ 𝑅) |
| 18 | suppssof1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 19 | 14, 15, 16, 17, 18 | suppssov1 8201 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥))) supp 𝑍) ⊆ 𝐿) |
| 20 | 10, 19 | eqsstrd 3998 | 1 ⊢ (𝜑 → ((𝐴 ∘f 𝑂𝐵) supp 𝑍) ⊆ 𝐿) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 ↦ cmpt 5206 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 supp csupp 8164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-supp 8165 |
| This theorem is referenced by: frlmup1 21763 psrbagev1 22040 jensen 26956 offinsupp1 32709 |
| Copyright terms: Public domain | W3C validator |