MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssov2 Structured version   Visualization version   GIF version

Theorem suppssov2 8224
Description: Formula building theorem for support restrictions: operator with right annihilator. (Contributed by SN, 11-Apr-2025.)
Hypotheses
Ref Expression
suppssov2.s (𝜑 → ((𝑥𝐷𝐵) supp 𝑌) ⊆ 𝐿)
suppssov2.o ((𝜑𝑣𝑅) → (𝑣𝑂𝑌) = 𝑍)
suppssov2.a ((𝜑𝑥𝐷) → 𝐴𝑅)
suppssov2.b ((𝜑𝑥𝐷) → 𝐵𝑉)
suppssov2.y (𝜑𝑌𝑊)
Assertion
Ref Expression
suppssov2 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑣   𝜑,𝑥   𝑣,𝐴   𝑥,𝐷   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑥,𝑌   𝑣,𝑍   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑣)   𝐷(𝑣)   𝑅(𝑥)   𝐿(𝑥,𝑣)   𝑂(𝑥)   𝑉(𝑥,𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem suppssov2
StepHypRef Expression
1 suppssov2.b . . . . . . . . . 10 ((𝜑𝑥𝐷) → 𝐵𝑉)
21elexd 3503 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐵 ∈ V)
32adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → 𝐵 ∈ V)
43adantr 480 . . . . . . 7 ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐵 ∈ V)
5 oveq1 7439 . . . . . . . . . . . 12 (𝑣 = 𝐴 → (𝑣𝑂𝑌) = (𝐴𝑂𝑌))
65eqeq1d 2738 . . . . . . . . . . 11 (𝑣 = 𝐴 → ((𝑣𝑂𝑌) = 𝑍 ↔ (𝐴𝑂𝑌) = 𝑍))
7 suppssov2.o . . . . . . . . . . . . 13 ((𝜑𝑣𝑅) → (𝑣𝑂𝑌) = 𝑍)
87ralrimiva 3145 . . . . . . . . . . . 12 (𝜑 → ∀𝑣𝑅 (𝑣𝑂𝑌) = 𝑍)
98ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → ∀𝑣𝑅 (𝑣𝑂𝑌) = 𝑍)
10 suppssov2.a . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝐴𝑅)
1110adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → 𝐴𝑅)
126, 9, 11rspcdva 3622 . . . . . . . . . 10 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → (𝐴𝑂𝑌) = 𝑍)
13 oveq2 7440 . . . . . . . . . . 11 (𝐵 = 𝑌 → (𝐴𝑂𝐵) = (𝐴𝑂𝑌))
1413eqeq1d 2738 . . . . . . . . . 10 (𝐵 = 𝑌 → ((𝐴𝑂𝐵) = 𝑍 ↔ (𝐴𝑂𝑌) = 𝑍))
1512, 14syl5ibrcom 247 . . . . . . . . 9 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → (𝐵 = 𝑌 → (𝐴𝑂𝐵) = 𝑍))
1615necon3d 2960 . . . . . . . 8 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ≠ 𝑍𝐵𝑌))
17 eldifsni 4789 . . . . . . . 8 ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → (𝐴𝑂𝐵) ≠ 𝑍)
1816, 17impel 505 . . . . . . 7 ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐵𝑌)
19 eldifsn 4785 . . . . . . 7 (𝐵 ∈ (V ∖ {𝑌}) ↔ (𝐵 ∈ V ∧ 𝐵𝑌))
204, 18, 19sylanbrc 583 . . . . . 6 ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐵 ∈ (V ∖ {𝑌}))
2120ex 412 . . . . 5 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐵 ∈ (V ∖ {𝑌})))
2221ss2rabdv 4075 . . . 4 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐵 ∈ (V ∖ {𝑌})})
23 eqid 2736 . . . . 5 (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = (𝑥𝐷 ↦ (𝐴𝑂𝐵))
24 simprl 770 . . . . 5 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝐷 ∈ V)
25 simprr 772 . . . . 5 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝑍 ∈ V)
2623, 24, 25mptsuppdifd 8212 . . . 4 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})})
27 eqid 2736 . . . . 5 (𝑥𝐷𝐵) = (𝑥𝐷𝐵)
28 suppssov2.y . . . . . 6 (𝜑𝑌𝑊)
2928adantr 480 . . . . 5 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝑌𝑊)
3027, 24, 29mptsuppdifd 8212 . . . 4 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷𝐵) supp 𝑌) = {𝑥𝐷𝐵 ∈ (V ∖ {𝑌})})
3122, 26, 303sstr4d 4038 . . 3 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ ((𝑥𝐷𝐵) supp 𝑌))
32 suppssov2.s . . . 4 (𝜑 → ((𝑥𝐷𝐵) supp 𝑌) ⊆ 𝐿)
3332adantr 480 . . 3 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷𝐵) supp 𝑌) ⊆ 𝐿)
3431, 33sstrd 3993 . 2 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
35 mptexg 7242 . . . . . . 7 (𝐷 ∈ V → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
36 ovex 7465 . . . . . . . . . 10 (𝐴𝑂𝐵) ∈ V
3736rgenw 3064 . . . . . . . . 9 𝑥𝐷 (𝐴𝑂𝐵) ∈ V
38 dmmptg 6261 . . . . . . . . 9 (∀𝑥𝐷 (𝐴𝑂𝐵) ∈ V → dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷)
3937, 38ax-mp 5 . . . . . . . 8 dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷
40 dmexg 7924 . . . . . . . 8 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
4139, 40eqeltrrid 2845 . . . . . . 7 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → 𝐷 ∈ V)
4235, 41impbii 209 . . . . . 6 (𝐷 ∈ V ↔ (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
4342anbi1i 624 . . . . 5 ((𝐷 ∈ V ∧ 𝑍 ∈ V) ↔ ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V))
44 supp0prc 8189 . . . . 5 (¬ ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅)
4543, 44sylnbi 330 . . . 4 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅)
46 0ss 4399 . . . 4 ∅ ⊆ 𝐿
4745, 46eqsstrdi 4027 . . 3 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
4847adantl 481 . 2 ((𝜑 ∧ ¬ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
4934, 48pm2.61dan 812 1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  wral 3060  {crab 3435  Vcvv 3479  cdif 3947  wss 3950  c0 4332  {csn 4625  cmpt 5224  dom cdm 5684  (class class class)co 7432   supp csupp 8186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-supp 8187
This theorem is referenced by:  psdmplcl  22167
  Copyright terms: Public domain W3C validator