| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofuswapf1 | Structured version Visualization version GIF version | ||
| Description: The object part of a bifunctor pre-composed with a swap functor. (Contributed by Zhi Wang, 9-Oct-2025.) |
| Ref | Expression |
|---|---|
| cofuswapf1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| cofuswapf1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| cofuswapf1.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) |
| cofuswapf1.g | ⊢ (𝜑 → 𝐺 = (𝐹 ∘func (𝐶swapF𝐷))) |
| cofuswapf1.a | ⊢ 𝐴 = (Base‘𝐶) |
| cofuswapf1.b | ⊢ 𝐵 = (Base‘𝐷) |
| cofuswapf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| cofuswapf1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| cofuswapf1 | ⊢ (𝜑 → (𝑋(1st ‘𝐺)𝑌) = (𝑌(1st ‘𝐹)𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7416 | . . . 4 ⊢ (𝑋(1st ‘𝐺)𝑌) = ((1st ‘𝐺)‘〈𝑋, 𝑌〉) | |
| 2 | cofuswapf1.g | . . . . . 6 ⊢ (𝜑 → 𝐺 = (𝐹 ∘func (𝐶swapF𝐷))) | |
| 3 | 2 | fveq2d 6890 | . . . . 5 ⊢ (𝜑 → (1st ‘𝐺) = (1st ‘(𝐹 ∘func (𝐶swapF𝐷)))) |
| 4 | 3 | fveq1d 6888 | . . . 4 ⊢ (𝜑 → ((1st ‘𝐺)‘〈𝑋, 𝑌〉) = ((1st ‘(𝐹 ∘func (𝐶swapF𝐷)))‘〈𝑋, 𝑌〉)) |
| 5 | 1, 4 | eqtrid 2781 | . . 3 ⊢ (𝜑 → (𝑋(1st ‘𝐺)𝑌) = ((1st ‘(𝐹 ∘func (𝐶swapF𝐷)))‘〈𝑋, 𝑌〉)) |
| 6 | eqid 2734 | . . . . 5 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
| 7 | cofuswapf1.a | . . . . 5 ⊢ 𝐴 = (Base‘𝐶) | |
| 8 | cofuswapf1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐷) | |
| 9 | 6, 7, 8 | xpcbas 18194 | . . . 4 ⊢ (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷)) |
| 10 | cofuswapf1.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 11 | cofuswapf1.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 12 | eqid 2734 | . . . . 5 ⊢ (𝐷 ×c 𝐶) = (𝐷 ×c 𝐶) | |
| 13 | 10, 11, 6, 12 | swapffunca 49035 | . . . 4 ⊢ (𝜑 → (𝐶swapF𝐷) ∈ ((𝐶 ×c 𝐷) Func (𝐷 ×c 𝐶))) |
| 14 | cofuswapf1.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) | |
| 15 | cofuswapf1.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 16 | cofuswapf1.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 17 | 15, 16 | opelxpd 5704 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐴 × 𝐵)) |
| 18 | 9, 13, 14, 17 | cofu1 17901 | . . 3 ⊢ (𝜑 → ((1st ‘(𝐹 ∘func (𝐶swapF𝐷)))‘〈𝑋, 𝑌〉) = ((1st ‘𝐹)‘((1st ‘(𝐶swapF𝐷))‘〈𝑋, 𝑌〉))) |
| 19 | df-ov 7416 | . . . . 5 ⊢ (𝑋(1st ‘(𝐶swapF𝐷))𝑌) = ((1st ‘(𝐶swapF𝐷))‘〈𝑋, 𝑌〉) | |
| 20 | 10, 11 | swapfelvv 49014 | . . . . . . 7 ⊢ (𝜑 → (𝐶swapF𝐷) ∈ (V × V)) |
| 21 | 1st2nd2 8035 | . . . . . . 7 ⊢ ((𝐶swapF𝐷) ∈ (V × V) → (𝐶swapF𝐷) = 〈(1st ‘(𝐶swapF𝐷)), (2nd ‘(𝐶swapF𝐷))〉) | |
| 22 | 20, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐶swapF𝐷) = 〈(1st ‘(𝐶swapF𝐷)), (2nd ‘(𝐶swapF𝐷))〉) |
| 23 | 15, 7 | eleqtrdi 2843 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 24 | 16, 8 | eleqtrdi 2843 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
| 25 | 22, 23, 24 | swapf1 49023 | . . . . 5 ⊢ (𝜑 → (𝑋(1st ‘(𝐶swapF𝐷))𝑌) = 〈𝑌, 𝑋〉) |
| 26 | 19, 25 | eqtr3id 2783 | . . . 4 ⊢ (𝜑 → ((1st ‘(𝐶swapF𝐷))‘〈𝑋, 𝑌〉) = 〈𝑌, 𝑋〉) |
| 27 | 26 | fveq2d 6890 | . . 3 ⊢ (𝜑 → ((1st ‘𝐹)‘((1st ‘(𝐶swapF𝐷))‘〈𝑋, 𝑌〉)) = ((1st ‘𝐹)‘〈𝑌, 𝑋〉)) |
| 28 | 5, 18, 27 | 3eqtrd 2773 | . 2 ⊢ (𝜑 → (𝑋(1st ‘𝐺)𝑌) = ((1st ‘𝐹)‘〈𝑌, 𝑋〉)) |
| 29 | df-ov 7416 | . 2 ⊢ (𝑌(1st ‘𝐹)𝑋) = ((1st ‘𝐹)‘〈𝑌, 𝑋〉) | |
| 30 | 28, 29 | eqtr4di 2787 | 1 ⊢ (𝜑 → (𝑋(1st ‘𝐺)𝑌) = (𝑌(1st ‘𝐹)𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 〈cop 4612 × cxp 5663 ‘cfv 6541 (class class class)co 7413 1st c1st 7994 2nd c2nd 7995 Basecbs 17230 Catccat 17679 Func cfunc 17871 ∘func ccofu 17873 ×c cxpc 18184 swapFcswapf 49010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-hom 17298 df-cco 17299 df-cat 17683 df-cid 17684 df-func 17875 df-cofu 17877 df-xpc 18188 df-swapf 49011 |
| This theorem is referenced by: tposcurf11 49042 |
| Copyright terms: Public domain | W3C validator |