Proof of Theorem cofuswapf2
| Step | Hyp | Ref
| Expression |
| 1 | | cofuswapf1.g |
. . . . . 6
⊢ (𝜑 → 𝐺 = (𝐹 ∘func (𝐶swapF𝐷))) |
| 2 | 1 | fveq2d 6890 |
. . . . 5
⊢ (𝜑 → (2nd
‘𝐺) = (2nd
‘(𝐹
∘func (𝐶swapF𝐷)))) |
| 3 | 2 | oveqd 7430 |
. . . 4
⊢ (𝜑 → (〈𝑋, 𝑌〉(2nd ‘𝐺)〈𝑍, 𝑊〉) = (〈𝑋, 𝑌〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑍, 𝑊〉)) |
| 4 | 3 | oveqd 7430 |
. . 3
⊢ (𝜑 → (𝑀(〈𝑋, 𝑌〉(2nd ‘𝐺)〈𝑍, 𝑊〉)𝑁) = (𝑀(〈𝑋, 𝑌〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑍, 𝑊〉)𝑁)) |
| 5 | | df-ov 7416 |
. . . 4
⊢ (𝑀(〈𝑋, 𝑌〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑍, 𝑊〉)𝑁) = ((〈𝑋, 𝑌〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑍, 𝑊〉)‘〈𝑀, 𝑁〉) |
| 6 | | eqid 2734 |
. . . . . 6
⊢ (𝐶 ×c
𝐷) = (𝐶 ×c 𝐷) |
| 7 | | cofuswapf1.a |
. . . . . 6
⊢ 𝐴 = (Base‘𝐶) |
| 8 | | cofuswapf1.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐷) |
| 9 | 6, 7, 8 | xpcbas 18194 |
. . . . 5
⊢ (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷)) |
| 10 | | cofuswapf1.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 11 | | cofuswapf1.d |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 12 | | eqid 2734 |
. . . . . 6
⊢ (𝐷 ×c
𝐶) = (𝐷 ×c 𝐶) |
| 13 | 10, 11, 6, 12 | swapffunca 49035 |
. . . . 5
⊢ (𝜑 → (𝐶swapF𝐷) ∈ ((𝐶 ×c 𝐷) Func (𝐷 ×c 𝐶))) |
| 14 | | cofuswapf1.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) |
| 15 | | cofuswapf1.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| 16 | | cofuswapf1.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 17 | 15, 16 | opelxpd 5704 |
. . . . 5
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐴 × 𝐵)) |
| 18 | | cofuswapf2.z |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝐴) |
| 19 | | cofuswapf2.w |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ 𝐵) |
| 20 | 18, 19 | opelxpd 5704 |
. . . . 5
⊢ (𝜑 → 〈𝑍, 𝑊〉 ∈ (𝐴 × 𝐵)) |
| 21 | | eqid 2734 |
. . . . 5
⊢ (Hom
‘(𝐶
×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)) |
| 22 | | cofuswapf2.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑍)) |
| 23 | | cofuswapf2.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (𝑌𝐽𝑊)) |
| 24 | 22, 23 | opelxpd 5704 |
. . . . . 6
⊢ (𝜑 → 〈𝑀, 𝑁〉 ∈ ((𝑋𝐻𝑍) × (𝑌𝐽𝑊))) |
| 25 | | cofuswapf2.h |
. . . . . . 7
⊢ 𝐻 = (Hom ‘𝐶) |
| 26 | | cofuswapf2.j |
. . . . . . 7
⊢ 𝐽 = (Hom ‘𝐷) |
| 27 | 6, 7, 8, 25, 26, 15, 16, 18, 19, 21 | xpchom2 18202 |
. . . . . 6
⊢ (𝜑 → (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑍, 𝑊〉) = ((𝑋𝐻𝑍) × (𝑌𝐽𝑊))) |
| 28 | 24, 27 | eleqtrrd 2836 |
. . . . 5
⊢ (𝜑 → 〈𝑀, 𝑁〉 ∈ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑍, 𝑊〉)) |
| 29 | 9, 13, 14, 17, 20, 21, 28 | cofu2 17903 |
. . . 4
⊢ (𝜑 → ((〈𝑋, 𝑌〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑍, 𝑊〉)‘〈𝑀, 𝑁〉) = ((((1st ‘(𝐶swapF𝐷))‘〈𝑋, 𝑌〉)(2nd ‘𝐹)((1st ‘(𝐶swapF𝐷))‘〈𝑍, 𝑊〉))‘((〈𝑋, 𝑌〉(2nd ‘(𝐶swapF𝐷))〈𝑍, 𝑊〉)‘〈𝑀, 𝑁〉))) |
| 30 | 5, 29 | eqtrid 2781 |
. . 3
⊢ (𝜑 → (𝑀(〈𝑋, 𝑌〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑍, 𝑊〉)𝑁) = ((((1st ‘(𝐶swapF𝐷))‘〈𝑋, 𝑌〉)(2nd ‘𝐹)((1st ‘(𝐶swapF𝐷))‘〈𝑍, 𝑊〉))‘((〈𝑋, 𝑌〉(2nd ‘(𝐶swapF𝐷))〈𝑍, 𝑊〉)‘〈𝑀, 𝑁〉))) |
| 31 | | df-ov 7416 |
. . . . . 6
⊢ (𝑋(1st ‘(𝐶swapF𝐷))𝑌) = ((1st ‘(𝐶swapF𝐷))‘〈𝑋, 𝑌〉) |
| 32 | 10, 11 | swapfelvv 49014 |
. . . . . . . 8
⊢ (𝜑 → (𝐶swapF𝐷) ∈ (V × V)) |
| 33 | | 1st2nd2 8035 |
. . . . . . . 8
⊢ ((𝐶swapF𝐷) ∈ (V × V) →
(𝐶swapF𝐷) = 〈(1st ‘(𝐶swapF𝐷)), (2nd
‘(𝐶swapF𝐷))〉) |
| 34 | 32, 33 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐶swapF𝐷) = 〈(1st ‘(𝐶swapF𝐷)), (2nd
‘(𝐶swapF𝐷))〉) |
| 35 | 15, 7 | eleqtrdi 2843 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 36 | 16, 8 | eleqtrdi 2843 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
| 37 | 34, 35, 36 | swapf1 49023 |
. . . . . 6
⊢ (𝜑 → (𝑋(1st ‘(𝐶swapF𝐷))𝑌) = 〈𝑌, 𝑋〉) |
| 38 | 31, 37 | eqtr3id 2783 |
. . . . 5
⊢ (𝜑 → ((1st
‘(𝐶swapF𝐷))‘〈𝑋, 𝑌〉) = 〈𝑌, 𝑋〉) |
| 39 | | df-ov 7416 |
. . . . . 6
⊢ (𝑍(1st ‘(𝐶swapF𝐷))𝑊) = ((1st ‘(𝐶swapF𝐷))‘〈𝑍, 𝑊〉) |
| 40 | 18, 7 | eleqtrdi 2843 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
| 41 | 19, 8 | eleqtrdi 2843 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ (Base‘𝐷)) |
| 42 | 34, 40, 41 | swapf1 49023 |
. . . . . 6
⊢ (𝜑 → (𝑍(1st ‘(𝐶swapF𝐷))𝑊) = 〈𝑊, 𝑍〉) |
| 43 | 39, 42 | eqtr3id 2783 |
. . . . 5
⊢ (𝜑 → ((1st
‘(𝐶swapF𝐷))‘〈𝑍, 𝑊〉) = 〈𝑊, 𝑍〉) |
| 44 | 38, 43 | oveq12d 7431 |
. . . 4
⊢ (𝜑 → (((1st
‘(𝐶swapF𝐷))‘〈𝑋, 𝑌〉)(2nd ‘𝐹)((1st ‘(𝐶swapF𝐷))‘〈𝑍, 𝑊〉)) = (〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑊, 𝑍〉)) |
| 45 | | df-ov 7416 |
. . . . 5
⊢ (𝑀(〈𝑋, 𝑌〉(2nd ‘(𝐶swapF𝐷))〈𝑍, 𝑊〉)𝑁) = ((〈𝑋, 𝑌〉(2nd ‘(𝐶swapF𝐷))〈𝑍, 𝑊〉)‘〈𝑀, 𝑁〉) |
| 46 | 25 | oveqi 7426 |
. . . . . . 7
⊢ (𝑋𝐻𝑍) = (𝑋(Hom ‘𝐶)𝑍) |
| 47 | 22, 46 | eleqtrdi 2843 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (𝑋(Hom ‘𝐶)𝑍)) |
| 48 | 26 | oveqi 7426 |
. . . . . . 7
⊢ (𝑌𝐽𝑊) = (𝑌(Hom ‘𝐷)𝑊) |
| 49 | 23, 48 | eleqtrdi 2843 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (𝑌(Hom ‘𝐷)𝑊)) |
| 50 | 34, 35, 36, 40, 41, 47, 49 | swapf2 49025 |
. . . . 5
⊢ (𝜑 → (𝑀(〈𝑋, 𝑌〉(2nd ‘(𝐶swapF𝐷))〈𝑍, 𝑊〉)𝑁) = 〈𝑁, 𝑀〉) |
| 51 | 45, 50 | eqtr3id 2783 |
. . . 4
⊢ (𝜑 → ((〈𝑋, 𝑌〉(2nd ‘(𝐶swapF𝐷))〈𝑍, 𝑊〉)‘〈𝑀, 𝑁〉) = 〈𝑁, 𝑀〉) |
| 52 | 44, 51 | fveq12d 6893 |
. . 3
⊢ (𝜑 → ((((1st
‘(𝐶swapF𝐷))‘〈𝑋, 𝑌〉)(2nd ‘𝐹)((1st ‘(𝐶swapF𝐷))‘〈𝑍, 𝑊〉))‘((〈𝑋, 𝑌〉(2nd ‘(𝐶swapF𝐷))〈𝑍, 𝑊〉)‘〈𝑀, 𝑁〉)) = ((〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑊, 𝑍〉)‘〈𝑁, 𝑀〉)) |
| 53 | 4, 30, 52 | 3eqtrd 2773 |
. 2
⊢ (𝜑 → (𝑀(〈𝑋, 𝑌〉(2nd ‘𝐺)〈𝑍, 𝑊〉)𝑁) = ((〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑊, 𝑍〉)‘〈𝑁, 𝑀〉)) |
| 54 | | df-ov 7416 |
. 2
⊢ (𝑁(〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑊, 𝑍〉)𝑀) = ((〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑊, 𝑍〉)‘〈𝑁, 𝑀〉) |
| 55 | 53, 54 | eqtr4di 2787 |
1
⊢ (𝜑 → (𝑀(〈𝑋, 𝑌〉(2nd ‘𝐺)〈𝑍, 𝑊〉)𝑁) = (𝑁(〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑊, 𝑍〉)𝑀)) |