Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofuswapf2 Structured version   Visualization version   GIF version

Theorem cofuswapf2 49456
Description: The morphism part of a bifunctor pre-composed with a swap functor. (Contributed by Zhi Wang, 9-Oct-2025.)
Hypotheses
Ref Expression
cofuswapf1.c (𝜑𝐶 ∈ Cat)
cofuswapf1.d (𝜑𝐷 ∈ Cat)
cofuswapf1.f (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))
cofuswapf1.g (𝜑𝐺 = (𝐹func (𝐶 swapF 𝐷)))
cofuswapf1.a 𝐴 = (Base‘𝐶)
cofuswapf1.b 𝐵 = (Base‘𝐷)
cofuswapf1.x (𝜑𝑋𝐴)
cofuswapf1.y (𝜑𝑌𝐵)
cofuswapf2.z (𝜑𝑍𝐴)
cofuswapf2.w (𝜑𝑊𝐵)
cofuswapf2.h 𝐻 = (Hom ‘𝐶)
cofuswapf2.j 𝐽 = (Hom ‘𝐷)
cofuswapf2.m (𝜑𝑀 ∈ (𝑋𝐻𝑍))
cofuswapf2.n (𝜑𝑁 ∈ (𝑌𝐽𝑊))
Assertion
Ref Expression
cofuswapf2 (𝜑 → (𝑀(⟨𝑋, 𝑌⟩(2nd𝐺)⟨𝑍, 𝑊⟩)𝑁) = (𝑁(⟨𝑌, 𝑋⟩(2nd𝐹)⟨𝑊, 𝑍⟩)𝑀))

Proof of Theorem cofuswapf2
StepHypRef Expression
1 cofuswapf1.g . . . . . 6 (𝜑𝐺 = (𝐹func (𝐶 swapF 𝐷)))
21fveq2d 6835 . . . . 5 (𝜑 → (2nd𝐺) = (2nd ‘(𝐹func (𝐶 swapF 𝐷))))
32oveqd 7372 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩(2nd𝐺)⟨𝑍, 𝑊⟩) = (⟨𝑋, 𝑌⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑍, 𝑊⟩))
43oveqd 7372 . . 3 (𝜑 → (𝑀(⟨𝑋, 𝑌⟩(2nd𝐺)⟨𝑍, 𝑊⟩)𝑁) = (𝑀(⟨𝑋, 𝑌⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑍, 𝑊⟩)𝑁))
5 df-ov 7358 . . . 4 (𝑀(⟨𝑋, 𝑌⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑍, 𝑊⟩)𝑁) = ((⟨𝑋, 𝑌⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑀, 𝑁⟩)
6 eqid 2733 . . . . . 6 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
7 cofuswapf1.a . . . . . 6 𝐴 = (Base‘𝐶)
8 cofuswapf1.b . . . . . 6 𝐵 = (Base‘𝐷)
96, 7, 8xpcbas 18092 . . . . 5 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
10 cofuswapf1.c . . . . . 6 (𝜑𝐶 ∈ Cat)
11 cofuswapf1.d . . . . . 6 (𝜑𝐷 ∈ Cat)
12 eqid 2733 . . . . . 6 (𝐷 ×c 𝐶) = (𝐷 ×c 𝐶)
1310, 11, 6, 12swapffunca 49445 . . . . 5 (𝜑 → (𝐶 swapF 𝐷) ∈ ((𝐶 ×c 𝐷) Func (𝐷 ×c 𝐶)))
14 cofuswapf1.f . . . . 5 (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))
15 cofuswapf1.x . . . . . 6 (𝜑𝑋𝐴)
16 cofuswapf1.y . . . . . 6 (𝜑𝑌𝐵)
1715, 16opelxpd 5660 . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
18 cofuswapf2.z . . . . . 6 (𝜑𝑍𝐴)
19 cofuswapf2.w . . . . . 6 (𝜑𝑊𝐵)
2018, 19opelxpd 5660 . . . . 5 (𝜑 → ⟨𝑍, 𝑊⟩ ∈ (𝐴 × 𝐵))
21 eqid 2733 . . . . 5 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
22 cofuswapf2.m . . . . . . 7 (𝜑𝑀 ∈ (𝑋𝐻𝑍))
23 cofuswapf2.n . . . . . . 7 (𝜑𝑁 ∈ (𝑌𝐽𝑊))
2422, 23opelxpd 5660 . . . . . 6 (𝜑 → ⟨𝑀, 𝑁⟩ ∈ ((𝑋𝐻𝑍) × (𝑌𝐽𝑊)))
25 cofuswapf2.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
26 cofuswapf2.j . . . . . . 7 𝐽 = (Hom ‘𝐷)
276, 7, 8, 25, 26, 15, 16, 18, 19, 21xpchom2 18100 . . . . . 6 (𝜑 → (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩) = ((𝑋𝐻𝑍) × (𝑌𝐽𝑊)))
2824, 27eleqtrrd 2836 . . . . 5 (𝜑 → ⟨𝑀, 𝑁⟩ ∈ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))
299, 13, 14, 17, 20, 21, 28cofu2 17801 . . . 4 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑀, 𝑁⟩) = ((((1st ‘(𝐶 swapF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐹)((1st ‘(𝐶 swapF 𝐷))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 swapF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑀, 𝑁⟩)))
305, 29eqtrid 2780 . . 3 (𝜑 → (𝑀(⟨𝑋, 𝑌⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑍, 𝑊⟩)𝑁) = ((((1st ‘(𝐶 swapF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐹)((1st ‘(𝐶 swapF 𝐷))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 swapF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑀, 𝑁⟩)))
31 df-ov 7358 . . . . . 6 (𝑋(1st ‘(𝐶 swapF 𝐷))𝑌) = ((1st ‘(𝐶 swapF 𝐷))‘⟨𝑋, 𝑌⟩)
3210, 11swapfelvv 49424 . . . . . . . 8 (𝜑 → (𝐶 swapF 𝐷) ∈ (V × V))
33 1st2nd2 7969 . . . . . . . 8 ((𝐶 swapF 𝐷) ∈ (V × V) → (𝐶 swapF 𝐷) = ⟨(1st ‘(𝐶 swapF 𝐷)), (2nd ‘(𝐶 swapF 𝐷))⟩)
3432, 33syl 17 . . . . . . 7 (𝜑 → (𝐶 swapF 𝐷) = ⟨(1st ‘(𝐶 swapF 𝐷)), (2nd ‘(𝐶 swapF 𝐷))⟩)
3515, 7eleqtrdi 2843 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝐶))
3616, 8eleqtrdi 2843 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝐷))
3734, 35, 36swapf1 49433 . . . . . 6 (𝜑 → (𝑋(1st ‘(𝐶 swapF 𝐷))𝑌) = ⟨𝑌, 𝑋⟩)
3831, 37eqtr3id 2782 . . . . 5 (𝜑 → ((1st ‘(𝐶 swapF 𝐷))‘⟨𝑋, 𝑌⟩) = ⟨𝑌, 𝑋⟩)
39 df-ov 7358 . . . . . 6 (𝑍(1st ‘(𝐶 swapF 𝐷))𝑊) = ((1st ‘(𝐶 swapF 𝐷))‘⟨𝑍, 𝑊⟩)
4018, 7eleqtrdi 2843 . . . . . . 7 (𝜑𝑍 ∈ (Base‘𝐶))
4119, 8eleqtrdi 2843 . . . . . . 7 (𝜑𝑊 ∈ (Base‘𝐷))
4234, 40, 41swapf1 49433 . . . . . 6 (𝜑 → (𝑍(1st ‘(𝐶 swapF 𝐷))𝑊) = ⟨𝑊, 𝑍⟩)
4339, 42eqtr3id 2782 . . . . 5 (𝜑 → ((1st ‘(𝐶 swapF 𝐷))‘⟨𝑍, 𝑊⟩) = ⟨𝑊, 𝑍⟩)
4438, 43oveq12d 7373 . . . 4 (𝜑 → (((1st ‘(𝐶 swapF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐹)((1st ‘(𝐶 swapF 𝐷))‘⟨𝑍, 𝑊⟩)) = (⟨𝑌, 𝑋⟩(2nd𝐹)⟨𝑊, 𝑍⟩))
45 df-ov 7358 . . . . 5 (𝑀(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 swapF 𝐷))⟨𝑍, 𝑊⟩)𝑁) = ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 swapF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑀, 𝑁⟩)
4625oveqi 7368 . . . . . . 7 (𝑋𝐻𝑍) = (𝑋(Hom ‘𝐶)𝑍)
4722, 46eleqtrdi 2843 . . . . . 6 (𝜑𝑀 ∈ (𝑋(Hom ‘𝐶)𝑍))
4826oveqi 7368 . . . . . . 7 (𝑌𝐽𝑊) = (𝑌(Hom ‘𝐷)𝑊)
4923, 48eleqtrdi 2843 . . . . . 6 (𝜑𝑁 ∈ (𝑌(Hom ‘𝐷)𝑊))
5034, 35, 36, 40, 41, 47, 49swapf2 49435 . . . . 5 (𝜑 → (𝑀(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 swapF 𝐷))⟨𝑍, 𝑊⟩)𝑁) = ⟨𝑁, 𝑀⟩)
5145, 50eqtr3id 2782 . . . 4 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 swapF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑀, 𝑁⟩) = ⟨𝑁, 𝑀⟩)
5244, 51fveq12d 6838 . . 3 (𝜑 → ((((1st ‘(𝐶 swapF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐹)((1st ‘(𝐶 swapF 𝐷))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 swapF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑀, 𝑁⟩)) = ((⟨𝑌, 𝑋⟩(2nd𝐹)⟨𝑊, 𝑍⟩)‘⟨𝑁, 𝑀⟩))
534, 30, 523eqtrd 2772 . 2 (𝜑 → (𝑀(⟨𝑋, 𝑌⟩(2nd𝐺)⟨𝑍, 𝑊⟩)𝑁) = ((⟨𝑌, 𝑋⟩(2nd𝐹)⟨𝑊, 𝑍⟩)‘⟨𝑁, 𝑀⟩))
54 df-ov 7358 . 2 (𝑁(⟨𝑌, 𝑋⟩(2nd𝐹)⟨𝑊, 𝑍⟩)𝑀) = ((⟨𝑌, 𝑋⟩(2nd𝐹)⟨𝑊, 𝑍⟩)‘⟨𝑁, 𝑀⟩)
5553, 54eqtr4di 2786 1 (𝜑 → (𝑀(⟨𝑋, 𝑌⟩(2nd𝐺)⟨𝑍, 𝑊⟩)𝑁) = (𝑁(⟨𝑌, 𝑋⟩(2nd𝐹)⟨𝑊, 𝑍⟩)𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cop 4583   × cxp 5619  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  Basecbs 17127  Hom chom 17179  Catccat 17578   Func cfunc 17769  func ccofu 17771   ×c cxpc 18082   swapF cswapf 49420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-hom 17192  df-cco 17193  df-cat 17582  df-cid 17583  df-func 17773  df-cofu 17775  df-xpc 18086  df-swapf 49421
This theorem is referenced by:  tposcurf12  49459  tposcurf2  49461
  Copyright terms: Public domain W3C validator