Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofuswapf2 Structured version   Visualization version   GIF version

Theorem cofuswapf2 49300
Description: The morphism part of a bifunctor pre-composed with a swap functor. (Contributed by Zhi Wang, 9-Oct-2025.)
Hypotheses
Ref Expression
cofuswapf1.c (𝜑𝐶 ∈ Cat)
cofuswapf1.d (𝜑𝐷 ∈ Cat)
cofuswapf1.f (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))
cofuswapf1.g (𝜑𝐺 = (𝐹func (𝐶 swapF 𝐷)))
cofuswapf1.a 𝐴 = (Base‘𝐶)
cofuswapf1.b 𝐵 = (Base‘𝐷)
cofuswapf1.x (𝜑𝑋𝐴)
cofuswapf1.y (𝜑𝑌𝐵)
cofuswapf2.z (𝜑𝑍𝐴)
cofuswapf2.w (𝜑𝑊𝐵)
cofuswapf2.h 𝐻 = (Hom ‘𝐶)
cofuswapf2.j 𝐽 = (Hom ‘𝐷)
cofuswapf2.m (𝜑𝑀 ∈ (𝑋𝐻𝑍))
cofuswapf2.n (𝜑𝑁 ∈ (𝑌𝐽𝑊))
Assertion
Ref Expression
cofuswapf2 (𝜑 → (𝑀(⟨𝑋, 𝑌⟩(2nd𝐺)⟨𝑍, 𝑊⟩)𝑁) = (𝑁(⟨𝑌, 𝑋⟩(2nd𝐹)⟨𝑊, 𝑍⟩)𝑀))

Proof of Theorem cofuswapf2
StepHypRef Expression
1 cofuswapf1.g . . . . . 6 (𝜑𝐺 = (𝐹func (𝐶 swapF 𝐷)))
21fveq2d 6830 . . . . 5 (𝜑 → (2nd𝐺) = (2nd ‘(𝐹func (𝐶 swapF 𝐷))))
32oveqd 7370 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩(2nd𝐺)⟨𝑍, 𝑊⟩) = (⟨𝑋, 𝑌⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑍, 𝑊⟩))
43oveqd 7370 . . 3 (𝜑 → (𝑀(⟨𝑋, 𝑌⟩(2nd𝐺)⟨𝑍, 𝑊⟩)𝑁) = (𝑀(⟨𝑋, 𝑌⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑍, 𝑊⟩)𝑁))
5 df-ov 7356 . . . 4 (𝑀(⟨𝑋, 𝑌⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑍, 𝑊⟩)𝑁) = ((⟨𝑋, 𝑌⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑀, 𝑁⟩)
6 eqid 2729 . . . . . 6 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
7 cofuswapf1.a . . . . . 6 𝐴 = (Base‘𝐶)
8 cofuswapf1.b . . . . . 6 𝐵 = (Base‘𝐷)
96, 7, 8xpcbas 18103 . . . . 5 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
10 cofuswapf1.c . . . . . 6 (𝜑𝐶 ∈ Cat)
11 cofuswapf1.d . . . . . 6 (𝜑𝐷 ∈ Cat)
12 eqid 2729 . . . . . 6 (𝐷 ×c 𝐶) = (𝐷 ×c 𝐶)
1310, 11, 6, 12swapffunca 49289 . . . . 5 (𝜑 → (𝐶 swapF 𝐷) ∈ ((𝐶 ×c 𝐷) Func (𝐷 ×c 𝐶)))
14 cofuswapf1.f . . . . 5 (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))
15 cofuswapf1.x . . . . . 6 (𝜑𝑋𝐴)
16 cofuswapf1.y . . . . . 6 (𝜑𝑌𝐵)
1715, 16opelxpd 5662 . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
18 cofuswapf2.z . . . . . 6 (𝜑𝑍𝐴)
19 cofuswapf2.w . . . . . 6 (𝜑𝑊𝐵)
2018, 19opelxpd 5662 . . . . 5 (𝜑 → ⟨𝑍, 𝑊⟩ ∈ (𝐴 × 𝐵))
21 eqid 2729 . . . . 5 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
22 cofuswapf2.m . . . . . . 7 (𝜑𝑀 ∈ (𝑋𝐻𝑍))
23 cofuswapf2.n . . . . . . 7 (𝜑𝑁 ∈ (𝑌𝐽𝑊))
2422, 23opelxpd 5662 . . . . . 6 (𝜑 → ⟨𝑀, 𝑁⟩ ∈ ((𝑋𝐻𝑍) × (𝑌𝐽𝑊)))
25 cofuswapf2.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
26 cofuswapf2.j . . . . . . 7 𝐽 = (Hom ‘𝐷)
276, 7, 8, 25, 26, 15, 16, 18, 19, 21xpchom2 18111 . . . . . 6 (𝜑 → (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩) = ((𝑋𝐻𝑍) × (𝑌𝐽𝑊)))
2824, 27eleqtrrd 2831 . . . . 5 (𝜑 → ⟨𝑀, 𝑁⟩ ∈ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))
299, 13, 14, 17, 20, 21, 28cofu2 17812 . . . 4 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑀, 𝑁⟩) = ((((1st ‘(𝐶 swapF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐹)((1st ‘(𝐶 swapF 𝐷))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 swapF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑀, 𝑁⟩)))
305, 29eqtrid 2776 . . 3 (𝜑 → (𝑀(⟨𝑋, 𝑌⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑍, 𝑊⟩)𝑁) = ((((1st ‘(𝐶 swapF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐹)((1st ‘(𝐶 swapF 𝐷))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 swapF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑀, 𝑁⟩)))
31 df-ov 7356 . . . . . 6 (𝑋(1st ‘(𝐶 swapF 𝐷))𝑌) = ((1st ‘(𝐶 swapF 𝐷))‘⟨𝑋, 𝑌⟩)
3210, 11swapfelvv 49268 . . . . . . . 8 (𝜑 → (𝐶 swapF 𝐷) ∈ (V × V))
33 1st2nd2 7970 . . . . . . . 8 ((𝐶 swapF 𝐷) ∈ (V × V) → (𝐶 swapF 𝐷) = ⟨(1st ‘(𝐶 swapF 𝐷)), (2nd ‘(𝐶 swapF 𝐷))⟩)
3432, 33syl 17 . . . . . . 7 (𝜑 → (𝐶 swapF 𝐷) = ⟨(1st ‘(𝐶 swapF 𝐷)), (2nd ‘(𝐶 swapF 𝐷))⟩)
3515, 7eleqtrdi 2838 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝐶))
3616, 8eleqtrdi 2838 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝐷))
3734, 35, 36swapf1 49277 . . . . . 6 (𝜑 → (𝑋(1st ‘(𝐶 swapF 𝐷))𝑌) = ⟨𝑌, 𝑋⟩)
3831, 37eqtr3id 2778 . . . . 5 (𝜑 → ((1st ‘(𝐶 swapF 𝐷))‘⟨𝑋, 𝑌⟩) = ⟨𝑌, 𝑋⟩)
39 df-ov 7356 . . . . . 6 (𝑍(1st ‘(𝐶 swapF 𝐷))𝑊) = ((1st ‘(𝐶 swapF 𝐷))‘⟨𝑍, 𝑊⟩)
4018, 7eleqtrdi 2838 . . . . . . 7 (𝜑𝑍 ∈ (Base‘𝐶))
4119, 8eleqtrdi 2838 . . . . . . 7 (𝜑𝑊 ∈ (Base‘𝐷))
4234, 40, 41swapf1 49277 . . . . . 6 (𝜑 → (𝑍(1st ‘(𝐶 swapF 𝐷))𝑊) = ⟨𝑊, 𝑍⟩)
4339, 42eqtr3id 2778 . . . . 5 (𝜑 → ((1st ‘(𝐶 swapF 𝐷))‘⟨𝑍, 𝑊⟩) = ⟨𝑊, 𝑍⟩)
4438, 43oveq12d 7371 . . . 4 (𝜑 → (((1st ‘(𝐶 swapF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐹)((1st ‘(𝐶 swapF 𝐷))‘⟨𝑍, 𝑊⟩)) = (⟨𝑌, 𝑋⟩(2nd𝐹)⟨𝑊, 𝑍⟩))
45 df-ov 7356 . . . . 5 (𝑀(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 swapF 𝐷))⟨𝑍, 𝑊⟩)𝑁) = ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 swapF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑀, 𝑁⟩)
4625oveqi 7366 . . . . . . 7 (𝑋𝐻𝑍) = (𝑋(Hom ‘𝐶)𝑍)
4722, 46eleqtrdi 2838 . . . . . 6 (𝜑𝑀 ∈ (𝑋(Hom ‘𝐶)𝑍))
4826oveqi 7366 . . . . . . 7 (𝑌𝐽𝑊) = (𝑌(Hom ‘𝐷)𝑊)
4923, 48eleqtrdi 2838 . . . . . 6 (𝜑𝑁 ∈ (𝑌(Hom ‘𝐷)𝑊))
5034, 35, 36, 40, 41, 47, 49swapf2 49279 . . . . 5 (𝜑 → (𝑀(⟨𝑋, 𝑌⟩(2nd ‘(𝐶 swapF 𝐷))⟨𝑍, 𝑊⟩)𝑁) = ⟨𝑁, 𝑀⟩)
5145, 50eqtr3id 2778 . . . 4 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 swapF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑀, 𝑁⟩) = ⟨𝑁, 𝑀⟩)
5244, 51fveq12d 6833 . . 3 (𝜑 → ((((1st ‘(𝐶 swapF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐹)((1st ‘(𝐶 swapF 𝐷))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 swapF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑀, 𝑁⟩)) = ((⟨𝑌, 𝑋⟩(2nd𝐹)⟨𝑊, 𝑍⟩)‘⟨𝑁, 𝑀⟩))
534, 30, 523eqtrd 2768 . 2 (𝜑 → (𝑀(⟨𝑋, 𝑌⟩(2nd𝐺)⟨𝑍, 𝑊⟩)𝑁) = ((⟨𝑌, 𝑋⟩(2nd𝐹)⟨𝑊, 𝑍⟩)‘⟨𝑁, 𝑀⟩))
54 df-ov 7356 . 2 (𝑁(⟨𝑌, 𝑋⟩(2nd𝐹)⟨𝑊, 𝑍⟩)𝑀) = ((⟨𝑌, 𝑋⟩(2nd𝐹)⟨𝑊, 𝑍⟩)‘⟨𝑁, 𝑀⟩)
5553, 54eqtr4di 2782 1 (𝜑 → (𝑀(⟨𝑋, 𝑌⟩(2nd𝐺)⟨𝑍, 𝑊⟩)𝑁) = (𝑁(⟨𝑌, 𝑋⟩(2nd𝐹)⟨𝑊, 𝑍⟩)𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  cop 4585   × cxp 5621  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Basecbs 17139  Hom chom 17191  Catccat 17589   Func cfunc 17780  func ccofu 17782   ×c cxpc 18093   swapF cswapf 49264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17140  df-hom 17204  df-cco 17205  df-cat 17593  df-cid 17594  df-func 17784  df-cofu 17786  df-xpc 18097  df-swapf 49265
This theorem is referenced by:  tposcurf12  49303  tposcurf2  49305
  Copyright terms: Public domain W3C validator