| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapfiso | Structured version Visualization version GIF version | ||
| Description: The swap functor is an isomorphism between product categories. (Contributed by Zhi Wang, 8-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapfid.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| swapfid.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| swapfid.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapfid.t | ⊢ 𝑇 = (𝐷 ×c 𝐶) |
| swapfiso.e | ⊢ 𝐸 = (CatCat‘𝑈) |
| swapfiso.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| swapfiso.s | ⊢ (𝜑 → 𝑆 ∈ 𝑈) |
| swapfiso.t | ⊢ (𝜑 → 𝑇 ∈ 𝑈) |
| swapfiso.i | ⊢ 𝐼 = (Iso‘𝐸) |
| Ref | Expression |
|---|---|
| swapfiso | ⊢ (𝜑 → (𝐶 swapF 𝐷) ∈ (𝑆𝐼𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swapfid.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | swapfid.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 3 | 1, 2 | swapfelvv 49225 | . . . 4 ⊢ (𝜑 → (𝐶 swapF 𝐷) ∈ (V × V)) |
| 4 | 1st2nd2 7986 | . . . 4 ⊢ ((𝐶 swapF 𝐷) ∈ (V × V) → (𝐶 swapF 𝐷) = 〈(1st ‘(𝐶 swapF 𝐷)), (2nd ‘(𝐶 swapF 𝐷))〉) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈(1st ‘(𝐶 swapF 𝐷)), (2nd ‘(𝐶 swapF 𝐷))〉) |
| 6 | swapfid.s | . . . . 5 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 7 | swapfid.t | . . . . 5 ⊢ 𝑇 = (𝐷 ×c 𝐶) | |
| 8 | 1, 2, 6, 7, 5 | swapfffth 49245 | . . . 4 ⊢ (𝜑 → (1st ‘(𝐶 swapF 𝐷))((𝑆 Full 𝑇) ∩ (𝑆 Faith 𝑇))(2nd ‘(𝐶 swapF 𝐷))) |
| 9 | df-br 5103 | . . . 4 ⊢ ((1st ‘(𝐶 swapF 𝐷))((𝑆 Full 𝑇) ∩ (𝑆 Faith 𝑇))(2nd ‘(𝐶 swapF 𝐷)) ↔ 〈(1st ‘(𝐶 swapF 𝐷)), (2nd ‘(𝐶 swapF 𝐷))〉 ∈ ((𝑆 Full 𝑇) ∩ (𝑆 Faith 𝑇))) | |
| 10 | 8, 9 | sylib 218 | . . 3 ⊢ (𝜑 → 〈(1st ‘(𝐶 swapF 𝐷)), (2nd ‘(𝐶 swapF 𝐷))〉 ∈ ((𝑆 Full 𝑇) ∩ (𝑆 Faith 𝑇))) |
| 11 | 5, 10 | eqeltrd 2828 | . 2 ⊢ (𝜑 → (𝐶 swapF 𝐷) ∈ ((𝑆 Full 𝑇) ∩ (𝑆 Faith 𝑇))) |
| 12 | eqid 2729 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 13 | eqid 2729 | . . 3 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 14 | 5, 6, 7, 1, 2, 12, 13 | swapf1f1o 49237 | . 2 ⊢ (𝜑 → (1st ‘(𝐶 swapF 𝐷)):(Base‘𝑆)–1-1-onto→(Base‘𝑇)) |
| 15 | swapfiso.e | . . 3 ⊢ 𝐸 = (CatCat‘𝑈) | |
| 16 | eqid 2729 | . . 3 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 17 | swapfiso.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 18 | swapfiso.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝑈) | |
| 19 | 6, 1, 2 | xpccat 18127 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ Cat) |
| 20 | 18, 19 | elind 4159 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (𝑈 ∩ Cat)) |
| 21 | 15, 16, 17 | catcbas 18039 | . . . 4 ⊢ (𝜑 → (Base‘𝐸) = (𝑈 ∩ Cat)) |
| 22 | 20, 21 | eleqtrrd 2831 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (Base‘𝐸)) |
| 23 | swapfiso.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝑈) | |
| 24 | 7, 2, 1 | xpccat 18127 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ Cat) |
| 25 | 23, 24 | elind 4159 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (𝑈 ∩ Cat)) |
| 26 | 25, 21 | eleqtrrd 2831 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (Base‘𝐸)) |
| 27 | swapfiso.i | . . 3 ⊢ 𝐼 = (Iso‘𝐸) | |
| 28 | 15, 16, 12, 13, 17, 22, 26, 27 | catciso 18049 | . 2 ⊢ (𝜑 → ((𝐶 swapF 𝐷) ∈ (𝑆𝐼𝑇) ↔ ((𝐶 swapF 𝐷) ∈ ((𝑆 Full 𝑇) ∩ (𝑆 Faith 𝑇)) ∧ (1st ‘(𝐶 swapF 𝐷)):(Base‘𝑆)–1-1-onto→(Base‘𝑇)))) |
| 29 | 11, 14, 28 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐶 swapF 𝐷) ∈ (𝑆𝐼𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 〈cop 4591 class class class wbr 5102 × cxp 5629 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 2nd c2nd 7946 Basecbs 17155 Catccat 17601 Isociso 17684 Full cful 17842 Faith cfth 17843 CatCatccatc 18036 ×c cxpc 18105 swapF cswapf 49221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-cat 17605 df-cid 17606 df-sect 17685 df-inv 17686 df-iso 17687 df-func 17796 df-idfu 17797 df-cofu 17798 df-full 17844 df-fth 17845 df-catc 18037 df-xpc 18109 df-swapf 49222 |
| This theorem is referenced by: swapciso 49248 |
| Copyright terms: Public domain | W3C validator |