Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem48 Structured version   Visualization version   GIF version

Theorem stoweidlem48 45969
Description: This lemma is used to prove that 𝑥 built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x < ε on 𝐴. Here 𝑋 is used to represent 𝑥 in the paper, 𝐸 is used to represent ε in the paper, and 𝐷 is used to represent 𝐴 in the paper (because 𝐴 is always used to represent the subalgebra). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem48.1 𝑖𝜑
stoweidlem48.2 𝑡𝜑
stoweidlem48.3 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem48.4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem48.5 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
stoweidlem48.6 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
stoweidlem48.7 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem48.8 (𝜑𝑀 ∈ ℕ)
stoweidlem48.9 (𝜑𝑊:(1...𝑀)⟶𝑉)
stoweidlem48.10 (𝜑𝑈:(1...𝑀)⟶𝑌)
stoweidlem48.11 (𝜑𝐷 ran 𝑊)
stoweidlem48.12 (𝜑𝐷𝑇)
stoweidlem48.13 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < 𝐸)
stoweidlem48.14 (𝜑𝑇 ∈ V)
stoweidlem48.15 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem48.16 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem48.17 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweidlem48 (𝜑 → ∀𝑡𝐷 (𝑋𝑡) < 𝐸)
Distinct variable groups:   𝑓,𝑔,,𝑡,𝐴   𝑓,𝑖,𝑇,,𝑡   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔   𝑈,𝑓,𝑔,,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑇,𝑔   𝐷,𝑖   𝑖,𝐸   𝑖,𝑀   𝑈,𝑖   𝑖,𝑊
Allowed substitution hints:   𝜑(𝑡,,𝑖)   𝐴(𝑖)   𝐷(𝑡,𝑓,𝑔,)   𝑃(𝑡,𝑓,𝑔,,𝑖)   𝐸(𝑡,𝑓,𝑔,)   𝐹(𝑡,,𝑖)   𝑀(𝑡,)   𝑉(𝑡,𝑓,𝑔,,𝑖)   𝑊(𝑡,𝑓,𝑔,)   𝑋(𝑡,𝑓,𝑔,,𝑖)   𝑌(𝑡,,𝑖)   𝑍(𝑡,𝑓,𝑔,,𝑖)

Proof of Theorem stoweidlem48
Dummy variables 𝑗 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem48.2 . 2 𝑡𝜑
2 stoweidlem48.12 . . . . . 6 (𝜑𝐷𝑇)
32sselda 4008 . . . . 5 ((𝜑𝑡𝐷) → 𝑡𝑇)
4 stoweidlem48.1 . . . . . 6 𝑖𝜑
5 stoweidlem48.3 . . . . . . 7 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
6 nfra1 3290 . . . . . . . 8 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
7 nfcv 2908 . . . . . . . 8 𝑡𝐴
86, 7nfrabw 3483 . . . . . . 7 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
95, 8nfcxfr 2906 . . . . . 6 𝑡𝑌
10 stoweidlem48.4 . . . . . 6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
11 stoweidlem48.5 . . . . . 6 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
12 stoweidlem48.6 . . . . . 6 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
13 stoweidlem48.7 . . . . . 6 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
14 stoweidlem48.14 . . . . . 6 (𝜑𝑇 ∈ V)
15 stoweidlem48.8 . . . . . 6 (𝜑𝑀 ∈ ℕ)
16 stoweidlem48.10 . . . . . 6 (𝜑𝑈:(1...𝑀)⟶𝑌)
175eleq2i 2836 . . . . . . . . 9 (𝑓𝑌𝑓 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
18 fveq1 6919 . . . . . . . . . . . . 13 ( = 𝑓 → (𝑡) = (𝑓𝑡))
1918breq2d 5178 . . . . . . . . . . . 12 ( = 𝑓 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑓𝑡)))
2018breq1d 5176 . . . . . . . . . . . 12 ( = 𝑓 → ((𝑡) ≤ 1 ↔ (𝑓𝑡) ≤ 1))
2119, 20anbi12d 631 . . . . . . . . . . 11 ( = 𝑓 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
2221ralbidv 3184 . . . . . . . . . 10 ( = 𝑓 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
2322elrab 3708 . . . . . . . . 9 (𝑓 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↔ (𝑓𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
2417, 23sylbb 219 . . . . . . . 8 (𝑓𝑌 → (𝑓𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
2524simpld 494 . . . . . . 7 (𝑓𝑌𝑓𝐴)
26 stoweidlem48.15 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2725, 26sylan2 592 . . . . . 6 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
28 eqid 2740 . . . . . . 7 (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
29 stoweidlem48.16 . . . . . . 7 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
301, 5, 28, 26, 29stoweidlem16 45937 . . . . . 6 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
314, 9, 10, 11, 12, 13, 14, 15, 16, 27, 30fmuldfeq 45504 . . . . 5 ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
323, 31syldan 590 . . . 4 ((𝜑𝑡𝐷) → (𝑋𝑡) = (𝑍𝑡))
33 elnnuz 12947 . . . . . . . . 9 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
3415, 33sylib 218 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘1))
3534adantr 480 . . . . . . 7 ((𝜑𝑡𝐷) → 𝑀 ∈ (ℤ‘1))
36 nfv 1913 . . . . . . . . . . . 12 𝑖 𝑡𝑇
374, 36nfan 1898 . . . . . . . . . . 11 𝑖(𝜑𝑡𝑇)
3816ffvelcdmda 7118 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
39 fveq1 6919 . . . . . . . . . . . . . . . . . . . 20 ( = (𝑈𝑖) → (𝑡) = ((𝑈𝑖)‘𝑡))
4039breq2d 5178 . . . . . . . . . . . . . . . . . . 19 ( = (𝑈𝑖) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝑈𝑖)‘𝑡)))
4139breq1d 5176 . . . . . . . . . . . . . . . . . . 19 ( = (𝑈𝑖) → ((𝑡) ≤ 1 ↔ ((𝑈𝑖)‘𝑡) ≤ 1))
4240, 41anbi12d 631 . . . . . . . . . . . . . . . . . 18 ( = (𝑈𝑖) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
4342ralbidv 3184 . . . . . . . . . . . . . . . . 17 ( = (𝑈𝑖) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
4443, 5elrab2 3711 . . . . . . . . . . . . . . . 16 ((𝑈𝑖) ∈ 𝑌 ↔ ((𝑈𝑖) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
4538, 44sylib 218 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑈𝑖) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
4645simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝐴)
47 simpl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
4847, 46jca 511 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑈𝑖) ∈ 𝐴))
49 eleq1 2832 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑈𝑖) → (𝑓𝐴 ↔ (𝑈𝑖) ∈ 𝐴))
5049anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝐴)))
51 feq1 6728 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
5250, 51imbi12d 344 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ)))
5352, 26vtoclg 3566 . . . . . . . . . . . . . 14 ((𝑈𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ))
5446, 48, 53sylc 65 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
5554adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
56 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
5755, 56ffvelcdmd 7119 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
58 eqid 2740 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
5937, 57, 58fmptdf 7151 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ)
60 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → 𝑡𝑇)
61 ovex 7481 . . . . . . . . . . . . 13 (1...𝑀) ∈ V
62 mptexg 7258 . . . . . . . . . . . . 13 ((1...𝑀) ∈ V → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
6361, 62mp1i 13 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
6412fvmpt2 7040 . . . . . . . . . . . 12 ((𝑡𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6560, 63, 64syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6665feq1d 6732 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝐹𝑡):(1...𝑀)⟶ℝ ↔ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ))
6759, 66mpbird 257 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡):(1...𝑀)⟶ℝ)
683, 67syldan 590 . . . . . . . 8 ((𝜑𝑡𝐷) → (𝐹𝑡):(1...𝑀)⟶ℝ)
6968ffvelcdmda 7118 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑘) ∈ ℝ)
70 remulcl 11269 . . . . . . . 8 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑘 · 𝑗) ∈ ℝ)
7170adantl 481 . . . . . . 7 (((𝜑𝑡𝐷) ∧ (𝑘 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑘 · 𝑗) ∈ ℝ)
7235, 69, 71seqcl 14073 . . . . . 6 ((𝜑𝑡𝐷) → (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ)
7313fvmpt2 7040 . . . . . 6 ((𝑡𝑇 ∧ (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
743, 72, 73syl2anc 583 . . . . 5 ((𝜑𝑡𝐷) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
75 nfcv 2908 . . . . . . . . 9 𝑖𝑇
76 nfmpt1 5274 . . . . . . . . 9 𝑖(𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
7775, 76nfmpt 5273 . . . . . . . 8 𝑖(𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
7812, 77nfcxfr 2906 . . . . . . 7 𝑖𝐹
79 nfcv 2908 . . . . . . 7 𝑖𝑡
8078, 79nffv 6930 . . . . . 6 𝑖(𝐹𝑡)
81 nfv 1913 . . . . . . 7 𝑖 𝑡𝐷
824, 81nfan 1898 . . . . . 6 𝑖(𝜑𝑡𝐷)
83 nfcv 2908 . . . . . 6 𝑗seq1( · , (𝐹𝑡))
84 eqid 2740 . . . . . 6 seq1( · , (𝐹𝑡)) = seq1( · , (𝐹𝑡))
8515adantr 480 . . . . . 6 ((𝜑𝑡𝐷) → 𝑀 ∈ ℕ)
86 simpll 766 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 𝜑)
87 simpr 484 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (1...𝑀))
883adantr 480 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
8945simprd 495 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1))
9089r19.21bi 3257 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝑇) → (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1))
9190simpld 494 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝑇) → 0 ≤ ((𝑈𝑖)‘𝑡))
9286, 87, 88, 91syl21anc 837 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ ((𝑈𝑖)‘𝑡))
9365fveq1d 6922 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖))
9486, 88, 93syl2anc 583 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖))
9586, 88, 87, 57syl21anc 837 . . . . . . . . 9 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
9658fvmpt2 7040 . . . . . . . . 9 ((𝑖 ∈ (1...𝑀) ∧ ((𝑈𝑖)‘𝑡) ∈ ℝ) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑈𝑖)‘𝑡))
9787, 95, 96syl2anc 583 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑈𝑖)‘𝑡))
9894, 97eqtrd 2780 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡))
9992, 98breqtrrd 5194 . . . . . 6 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ ((𝐹𝑡)‘𝑖))
10090simprd 495 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝑇) → ((𝑈𝑖)‘𝑡) ≤ 1)
10186, 87, 88, 100syl21anc 837 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ≤ 1)
10298, 101eqbrtrd 5188 . . . . . 6 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ≤ 1)
103 stoweidlem48.17 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
104103adantr 480 . . . . . 6 ((𝜑𝑡𝐷) → 𝐸 ∈ ℝ+)
105 stoweidlem48.11 . . . . . . . . . . 11 (𝜑𝐷 ran 𝑊)
106105sselda 4008 . . . . . . . . . 10 ((𝜑𝑡𝐷) → 𝑡 ran 𝑊)
107 eluni 4934 . . . . . . . . . 10 (𝑡 ran 𝑊 ↔ ∃𝑤(𝑡𝑤𝑤 ∈ ran 𝑊))
108106, 107sylib 218 . . . . . . . . 9 ((𝜑𝑡𝐷) → ∃𝑤(𝑡𝑤𝑤 ∈ ran 𝑊))
109 stoweidlem48.9 . . . . . . . . . . . . . . . 16 (𝜑𝑊:(1...𝑀)⟶𝑉)
110 ffn 6747 . . . . . . . . . . . . . . . 16 (𝑊:(1...𝑀)⟶𝑉𝑊 Fn (1...𝑀))
111 fvelrnb 6982 . . . . . . . . . . . . . . . 16 (𝑊 Fn (1...𝑀) → (𝑤 ∈ ran 𝑊 ↔ ∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤))
112109, 110, 1113syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ ran 𝑊 ↔ ∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤))
113112biimpa 476 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤)
114113adantrl 715 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑤𝑤 ∈ ran 𝑊)) → ∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤)
115 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑤) ∧ (𝑊𝑗) = 𝑤) → 𝑡𝑤)
116 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑤) ∧ (𝑊𝑗) = 𝑤) → (𝑊𝑗) = 𝑤)
117115, 116eleqtrrd 2847 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑤) ∧ (𝑊𝑗) = 𝑤) → 𝑡 ∈ (𝑊𝑗))
118117ex 412 . . . . . . . . . . . . . . 15 ((𝜑𝑡𝑤) → ((𝑊𝑗) = 𝑤𝑡 ∈ (𝑊𝑗)))
119118reximdv 3176 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑤) → (∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤 → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
120119adantrr 716 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑤𝑤 ∈ ran 𝑊)) → (∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤 → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
121114, 120mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑤𝑤 ∈ ran 𝑊)) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗))
122121ex 412 . . . . . . . . . . 11 (𝜑 → ((𝑡𝑤𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
123122exlimdv 1932 . . . . . . . . . 10 (𝜑 → (∃𝑤(𝑡𝑤𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
124123adantr 480 . . . . . . . . 9 ((𝜑𝑡𝐷) → (∃𝑤(𝑡𝑤𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
125108, 124mpd 15 . . . . . . . 8 ((𝜑𝑡𝐷) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗))
126 simplll 774 . . . . . . . . . . 11 ((((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑗)) → 𝜑)
127 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑗)) → 𝑗 ∈ (1...𝑀))
128 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑗)) → 𝑡 ∈ (𝑊𝑗))
129 nfv 1913 . . . . . . . . . . . . . 14 𝑖 𝑗 ∈ (1...𝑀)
130 nfv 1913 . . . . . . . . . . . . . 14 𝑖 𝑡 ∈ (𝑊𝑗)
1314, 129, 130nf3an 1900 . . . . . . . . . . . . 13 𝑖(𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗))
132 nfv 1913 . . . . . . . . . . . . 13 𝑖((𝑈𝑗)‘𝑡) < 𝐸
133131, 132nfim 1895 . . . . . . . . . . . 12 𝑖((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗)) → ((𝑈𝑗)‘𝑡) < 𝐸)
134 eleq1 2832 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑖 ∈ (1...𝑀) ↔ 𝑗 ∈ (1...𝑀)))
135 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑊𝑖) = (𝑊𝑗))
136135eleq2d 2830 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑡 ∈ (𝑊𝑖) ↔ 𝑡 ∈ (𝑊𝑗)))
137134, 1363anbi23d 1439 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑖)) ↔ (𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗))))
138 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑈𝑖) = (𝑈𝑗))
139138fveq1d 6922 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((𝑈𝑖)‘𝑡) = ((𝑈𝑗)‘𝑡))
140139breq1d 5176 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (((𝑈𝑖)‘𝑡) < 𝐸 ↔ ((𝑈𝑗)‘𝑡) < 𝐸))
141137, 140imbi12d 344 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < 𝐸) ↔ ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗)) → ((𝑈𝑗)‘𝑡) < 𝐸)))
142 stoweidlem48.13 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < 𝐸)
143142r19.21bi 3257 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < 𝐸)
1441433impa 1110 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < 𝐸)
145133, 141, 144chvarfv 2241 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗)) → ((𝑈𝑗)‘𝑡) < 𝐸)
146126, 127, 128, 145syl3anc 1371 . . . . . . . . . 10 ((((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑗)) → ((𝑈𝑗)‘𝑡) < 𝐸)
147146ex 412 . . . . . . . . 9 (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → (𝑡 ∈ (𝑊𝑗) → ((𝑈𝑗)‘𝑡) < 𝐸))
148147reximdva 3174 . . . . . . . 8 ((𝜑𝑡𝐷) → (∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗) → ∃𝑗 ∈ (1...𝑀)((𝑈𝑗)‘𝑡) < 𝐸))
149125, 148mpd 15 . . . . . . 7 ((𝜑𝑡𝐷) → ∃𝑗 ∈ (1...𝑀)((𝑈𝑗)‘𝑡) < 𝐸)
15082, 129nfan 1898 . . . . . . . . . . . 12 𝑖((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀))
151 nfcv 2908 . . . . . . . . . . . . . 14 𝑖𝑗
15280, 151nffv 6930 . . . . . . . . . . . . 13 𝑖((𝐹𝑡)‘𝑗)
153152nfeq1 2924 . . . . . . . . . . . 12 𝑖((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡)
154150, 153nfim 1895 . . . . . . . . . . 11 𝑖(((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡))
155134anbi2d 629 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) ↔ ((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀))))
156 fveq2 6920 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘𝑗))
157156, 139eqeq12d 2756 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡) ↔ ((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡)))
158155, 157imbi12d 344 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡)) ↔ (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡))))
159154, 158, 98chvarfv 2241 . . . . . . . . . 10 (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡))
160159breq1d 5176 . . . . . . . . 9 (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → (((𝐹𝑡)‘𝑗) < 𝐸 ↔ ((𝑈𝑗)‘𝑡) < 𝐸))
161160biimprd 248 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → (((𝑈𝑗)‘𝑡) < 𝐸 → ((𝐹𝑡)‘𝑗) < 𝐸))
162161reximdva 3174 . . . . . . 7 ((𝜑𝑡𝐷) → (∃𝑗 ∈ (1...𝑀)((𝑈𝑗)‘𝑡) < 𝐸 → ∃𝑗 ∈ (1...𝑀)((𝐹𝑡)‘𝑗) < 𝐸))
163149, 162mpd 15 . . . . . 6 ((𝜑𝑡𝐷) → ∃𝑗 ∈ (1...𝑀)((𝐹𝑡)‘𝑗) < 𝐸)
16480, 82, 83, 84, 85, 68, 99, 102, 104, 163fmul01lt1 45507 . . . . 5 ((𝜑𝑡𝐷) → (seq1( · , (𝐹𝑡))‘𝑀) < 𝐸)
16574, 164eqbrtrd 5188 . . . 4 ((𝜑𝑡𝐷) → (𝑍𝑡) < 𝐸)
16632, 165eqbrtrd 5188 . . 3 ((𝜑𝑡𝐷) → (𝑋𝑡) < 𝐸)
167166ex 412 . 2 (𝜑 → (𝑡𝐷 → (𝑋𝑡) < 𝐸))
1681, 167ralrimi 3263 1 (𝜑 → ∀𝑡𝐷 (𝑋𝑡) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wnf 1781  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976   cuni 4931   class class class wbr 5166  cmpt 5249  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  cr 11183  0cc0 11184  1c1 11185   · cmul 11189   < clt 11324  cle 11325  cn 12293  cuz 12903  +crp 13057  ...cfz 13567  seqcseq 14052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053
This theorem is referenced by:  stoweidlem51  45972
  Copyright terms: Public domain W3C validator