Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem48 Structured version   Visualization version   GIF version

Theorem stoweidlem48 43479
Description: This lemma is used to prove that 𝑥 built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x < ε on 𝐴. Here 𝑋 is used to represent 𝑥 in the paper, 𝐸 is used to represent ε in the paper, and 𝐷 is used to represent 𝐴 in the paper (because 𝐴 is always used to represent the subalgebra). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem48.1 𝑖𝜑
stoweidlem48.2 𝑡𝜑
stoweidlem48.3 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem48.4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem48.5 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
stoweidlem48.6 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
stoweidlem48.7 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem48.8 (𝜑𝑀 ∈ ℕ)
stoweidlem48.9 (𝜑𝑊:(1...𝑀)⟶𝑉)
stoweidlem48.10 (𝜑𝑈:(1...𝑀)⟶𝑌)
stoweidlem48.11 (𝜑𝐷 ran 𝑊)
stoweidlem48.12 (𝜑𝐷𝑇)
stoweidlem48.13 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < 𝐸)
stoweidlem48.14 (𝜑𝑇 ∈ V)
stoweidlem48.15 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem48.16 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem48.17 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweidlem48 (𝜑 → ∀𝑡𝐷 (𝑋𝑡) < 𝐸)
Distinct variable groups:   𝑓,𝑔,,𝑡,𝐴   𝑓,𝑖,𝑇,,𝑡   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔   𝑈,𝑓,𝑔,,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑇,𝑔   𝐷,𝑖   𝑖,𝐸   𝑖,𝑀   𝑈,𝑖   𝑖,𝑊
Allowed substitution hints:   𝜑(𝑡,,𝑖)   𝐴(𝑖)   𝐷(𝑡,𝑓,𝑔,)   𝑃(𝑡,𝑓,𝑔,,𝑖)   𝐸(𝑡,𝑓,𝑔,)   𝐹(𝑡,,𝑖)   𝑀(𝑡,)   𝑉(𝑡,𝑓,𝑔,,𝑖)   𝑊(𝑡,𝑓,𝑔,)   𝑋(𝑡,𝑓,𝑔,,𝑖)   𝑌(𝑡,,𝑖)   𝑍(𝑡,𝑓,𝑔,,𝑖)

Proof of Theorem stoweidlem48
Dummy variables 𝑗 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem48.2 . 2 𝑡𝜑
2 stoweidlem48.12 . . . . . 6 (𝜑𝐷𝑇)
32sselda 3917 . . . . 5 ((𝜑𝑡𝐷) → 𝑡𝑇)
4 stoweidlem48.1 . . . . . 6 𝑖𝜑
5 stoweidlem48.3 . . . . . . 7 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
6 nfra1 3142 . . . . . . . 8 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
7 nfcv 2906 . . . . . . . 8 𝑡𝐴
86, 7nfrabw 3311 . . . . . . 7 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
95, 8nfcxfr 2904 . . . . . 6 𝑡𝑌
10 stoweidlem48.4 . . . . . 6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
11 stoweidlem48.5 . . . . . 6 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
12 stoweidlem48.6 . . . . . 6 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
13 stoweidlem48.7 . . . . . 6 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
14 stoweidlem48.14 . . . . . 6 (𝜑𝑇 ∈ V)
15 stoweidlem48.8 . . . . . 6 (𝜑𝑀 ∈ ℕ)
16 stoweidlem48.10 . . . . . 6 (𝜑𝑈:(1...𝑀)⟶𝑌)
175eleq2i 2830 . . . . . . . . 9 (𝑓𝑌𝑓 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
18 fveq1 6755 . . . . . . . . . . . . 13 ( = 𝑓 → (𝑡) = (𝑓𝑡))
1918breq2d 5082 . . . . . . . . . . . 12 ( = 𝑓 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑓𝑡)))
2018breq1d 5080 . . . . . . . . . . . 12 ( = 𝑓 → ((𝑡) ≤ 1 ↔ (𝑓𝑡) ≤ 1))
2119, 20anbi12d 630 . . . . . . . . . . 11 ( = 𝑓 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
2221ralbidv 3120 . . . . . . . . . 10 ( = 𝑓 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
2322elrab 3617 . . . . . . . . 9 (𝑓 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↔ (𝑓𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
2417, 23sylbb 218 . . . . . . . 8 (𝑓𝑌 → (𝑓𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
2524simpld 494 . . . . . . 7 (𝑓𝑌𝑓𝐴)
26 stoweidlem48.15 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2725, 26sylan2 592 . . . . . 6 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
28 eqid 2738 . . . . . . 7 (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
29 stoweidlem48.16 . . . . . . 7 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
301, 5, 28, 26, 29stoweidlem16 43447 . . . . . 6 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
314, 9, 10, 11, 12, 13, 14, 15, 16, 27, 30fmuldfeq 43014 . . . . 5 ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
323, 31syldan 590 . . . 4 ((𝜑𝑡𝐷) → (𝑋𝑡) = (𝑍𝑡))
33 elnnuz 12551 . . . . . . . . 9 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
3415, 33sylib 217 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘1))
3534adantr 480 . . . . . . 7 ((𝜑𝑡𝐷) → 𝑀 ∈ (ℤ‘1))
36 nfv 1918 . . . . . . . . . . . 12 𝑖 𝑡𝑇
374, 36nfan 1903 . . . . . . . . . . 11 𝑖(𝜑𝑡𝑇)
3816ffvelrnda 6943 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
39 fveq1 6755 . . . . . . . . . . . . . . . . . . . 20 ( = (𝑈𝑖) → (𝑡) = ((𝑈𝑖)‘𝑡))
4039breq2d 5082 . . . . . . . . . . . . . . . . . . 19 ( = (𝑈𝑖) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝑈𝑖)‘𝑡)))
4139breq1d 5080 . . . . . . . . . . . . . . . . . . 19 ( = (𝑈𝑖) → ((𝑡) ≤ 1 ↔ ((𝑈𝑖)‘𝑡) ≤ 1))
4240, 41anbi12d 630 . . . . . . . . . . . . . . . . . 18 ( = (𝑈𝑖) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
4342ralbidv 3120 . . . . . . . . . . . . . . . . 17 ( = (𝑈𝑖) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
4443, 5elrab2 3620 . . . . . . . . . . . . . . . 16 ((𝑈𝑖) ∈ 𝑌 ↔ ((𝑈𝑖) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
4538, 44sylib 217 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑈𝑖) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
4645simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝐴)
47 simpl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
4847, 46jca 511 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑈𝑖) ∈ 𝐴))
49 eleq1 2826 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑈𝑖) → (𝑓𝐴 ↔ (𝑈𝑖) ∈ 𝐴))
5049anbi2d 628 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝐴)))
51 feq1 6565 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
5250, 51imbi12d 344 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ)))
5352, 26vtoclg 3495 . . . . . . . . . . . . . 14 ((𝑈𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ))
5446, 48, 53sylc 65 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
5554adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
56 simplr 765 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
5755, 56ffvelrnd 6944 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
58 eqid 2738 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
5937, 57, 58fmptdf 6973 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ)
60 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → 𝑡𝑇)
61 ovex 7288 . . . . . . . . . . . . 13 (1...𝑀) ∈ V
62 mptexg 7079 . . . . . . . . . . . . 13 ((1...𝑀) ∈ V → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
6361, 62mp1i 13 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
6412fvmpt2 6868 . . . . . . . . . . . 12 ((𝑡𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6560, 63, 64syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6665feq1d 6569 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝐹𝑡):(1...𝑀)⟶ℝ ↔ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ))
6759, 66mpbird 256 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡):(1...𝑀)⟶ℝ)
683, 67syldan 590 . . . . . . . 8 ((𝜑𝑡𝐷) → (𝐹𝑡):(1...𝑀)⟶ℝ)
6968ffvelrnda 6943 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑘) ∈ ℝ)
70 remulcl 10887 . . . . . . . 8 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑘 · 𝑗) ∈ ℝ)
7170adantl 481 . . . . . . 7 (((𝜑𝑡𝐷) ∧ (𝑘 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑘 · 𝑗) ∈ ℝ)
7235, 69, 71seqcl 13671 . . . . . 6 ((𝜑𝑡𝐷) → (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ)
7313fvmpt2 6868 . . . . . 6 ((𝑡𝑇 ∧ (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
743, 72, 73syl2anc 583 . . . . 5 ((𝜑𝑡𝐷) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
75 nfcv 2906 . . . . . . . . 9 𝑖𝑇
76 nfmpt1 5178 . . . . . . . . 9 𝑖(𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
7775, 76nfmpt 5177 . . . . . . . 8 𝑖(𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
7812, 77nfcxfr 2904 . . . . . . 7 𝑖𝐹
79 nfcv 2906 . . . . . . 7 𝑖𝑡
8078, 79nffv 6766 . . . . . 6 𝑖(𝐹𝑡)
81 nfv 1918 . . . . . . 7 𝑖 𝑡𝐷
824, 81nfan 1903 . . . . . 6 𝑖(𝜑𝑡𝐷)
83 nfcv 2906 . . . . . 6 𝑗seq1( · , (𝐹𝑡))
84 eqid 2738 . . . . . 6 seq1( · , (𝐹𝑡)) = seq1( · , (𝐹𝑡))
8515adantr 480 . . . . . 6 ((𝜑𝑡𝐷) → 𝑀 ∈ ℕ)
86 simpll 763 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 𝜑)
87 simpr 484 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (1...𝑀))
883adantr 480 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
8945simprd 495 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1))
9089r19.21bi 3132 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝑇) → (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1))
9190simpld 494 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝑇) → 0 ≤ ((𝑈𝑖)‘𝑡))
9286, 87, 88, 91syl21anc 834 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ ((𝑈𝑖)‘𝑡))
9365fveq1d 6758 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖))
9486, 88, 93syl2anc 583 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖))
9586, 88, 87, 57syl21anc 834 . . . . . . . . 9 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
9658fvmpt2 6868 . . . . . . . . 9 ((𝑖 ∈ (1...𝑀) ∧ ((𝑈𝑖)‘𝑡) ∈ ℝ) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑈𝑖)‘𝑡))
9787, 95, 96syl2anc 583 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑈𝑖)‘𝑡))
9894, 97eqtrd 2778 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡))
9992, 98breqtrrd 5098 . . . . . 6 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ ((𝐹𝑡)‘𝑖))
10090simprd 495 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝑇) → ((𝑈𝑖)‘𝑡) ≤ 1)
10186, 87, 88, 100syl21anc 834 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ≤ 1)
10298, 101eqbrtrd 5092 . . . . . 6 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ≤ 1)
103 stoweidlem48.17 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
104103adantr 480 . . . . . 6 ((𝜑𝑡𝐷) → 𝐸 ∈ ℝ+)
105 stoweidlem48.11 . . . . . . . . . . 11 (𝜑𝐷 ran 𝑊)
106105sselda 3917 . . . . . . . . . 10 ((𝜑𝑡𝐷) → 𝑡 ran 𝑊)
107 eluni 4839 . . . . . . . . . 10 (𝑡 ran 𝑊 ↔ ∃𝑤(𝑡𝑤𝑤 ∈ ran 𝑊))
108106, 107sylib 217 . . . . . . . . 9 ((𝜑𝑡𝐷) → ∃𝑤(𝑡𝑤𝑤 ∈ ran 𝑊))
109 stoweidlem48.9 . . . . . . . . . . . . . . . 16 (𝜑𝑊:(1...𝑀)⟶𝑉)
110 ffn 6584 . . . . . . . . . . . . . . . 16 (𝑊:(1...𝑀)⟶𝑉𝑊 Fn (1...𝑀))
111 fvelrnb 6812 . . . . . . . . . . . . . . . 16 (𝑊 Fn (1...𝑀) → (𝑤 ∈ ran 𝑊 ↔ ∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤))
112109, 110, 1113syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ ran 𝑊 ↔ ∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤))
113112biimpa 476 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤)
114113adantrl 712 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑤𝑤 ∈ ran 𝑊)) → ∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤)
115 simplr 765 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑤) ∧ (𝑊𝑗) = 𝑤) → 𝑡𝑤)
116 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑤) ∧ (𝑊𝑗) = 𝑤) → (𝑊𝑗) = 𝑤)
117115, 116eleqtrrd 2842 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑤) ∧ (𝑊𝑗) = 𝑤) → 𝑡 ∈ (𝑊𝑗))
118117ex 412 . . . . . . . . . . . . . . 15 ((𝜑𝑡𝑤) → ((𝑊𝑗) = 𝑤𝑡 ∈ (𝑊𝑗)))
119118reximdv 3201 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑤) → (∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤 → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
120119adantrr 713 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑤𝑤 ∈ ran 𝑊)) → (∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤 → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
121114, 120mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑤𝑤 ∈ ran 𝑊)) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗))
122121ex 412 . . . . . . . . . . 11 (𝜑 → ((𝑡𝑤𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
123122exlimdv 1937 . . . . . . . . . 10 (𝜑 → (∃𝑤(𝑡𝑤𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
124123adantr 480 . . . . . . . . 9 ((𝜑𝑡𝐷) → (∃𝑤(𝑡𝑤𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
125108, 124mpd 15 . . . . . . . 8 ((𝜑𝑡𝐷) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗))
126 simplll 771 . . . . . . . . . . 11 ((((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑗)) → 𝜑)
127 simplr 765 . . . . . . . . . . 11 ((((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑗)) → 𝑗 ∈ (1...𝑀))
128 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑗)) → 𝑡 ∈ (𝑊𝑗))
129 nfv 1918 . . . . . . . . . . . . . 14 𝑖 𝑗 ∈ (1...𝑀)
130 nfv 1918 . . . . . . . . . . . . . 14 𝑖 𝑡 ∈ (𝑊𝑗)
1314, 129, 130nf3an 1905 . . . . . . . . . . . . 13 𝑖(𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗))
132 nfv 1918 . . . . . . . . . . . . 13 𝑖((𝑈𝑗)‘𝑡) < 𝐸
133131, 132nfim 1900 . . . . . . . . . . . 12 𝑖((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗)) → ((𝑈𝑗)‘𝑡) < 𝐸)
134 eleq1 2826 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑖 ∈ (1...𝑀) ↔ 𝑗 ∈ (1...𝑀)))
135 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑊𝑖) = (𝑊𝑗))
136135eleq2d 2824 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑡 ∈ (𝑊𝑖) ↔ 𝑡 ∈ (𝑊𝑗)))
137134, 1363anbi23d 1437 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑖)) ↔ (𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗))))
138 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑈𝑖) = (𝑈𝑗))
139138fveq1d 6758 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((𝑈𝑖)‘𝑡) = ((𝑈𝑗)‘𝑡))
140139breq1d 5080 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (((𝑈𝑖)‘𝑡) < 𝐸 ↔ ((𝑈𝑗)‘𝑡) < 𝐸))
141137, 140imbi12d 344 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < 𝐸) ↔ ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗)) → ((𝑈𝑗)‘𝑡) < 𝐸)))
142 stoweidlem48.13 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < 𝐸)
143142r19.21bi 3132 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < 𝐸)
1441433impa 1108 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < 𝐸)
145133, 141, 144chvarfv 2236 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗)) → ((𝑈𝑗)‘𝑡) < 𝐸)
146126, 127, 128, 145syl3anc 1369 . . . . . . . . . 10 ((((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑗)) → ((𝑈𝑗)‘𝑡) < 𝐸)
147146ex 412 . . . . . . . . 9 (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → (𝑡 ∈ (𝑊𝑗) → ((𝑈𝑗)‘𝑡) < 𝐸))
148147reximdva 3202 . . . . . . . 8 ((𝜑𝑡𝐷) → (∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗) → ∃𝑗 ∈ (1...𝑀)((𝑈𝑗)‘𝑡) < 𝐸))
149125, 148mpd 15 . . . . . . 7 ((𝜑𝑡𝐷) → ∃𝑗 ∈ (1...𝑀)((𝑈𝑗)‘𝑡) < 𝐸)
15082, 129nfan 1903 . . . . . . . . . . . 12 𝑖((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀))
151 nfcv 2906 . . . . . . . . . . . . . 14 𝑖𝑗
15280, 151nffv 6766 . . . . . . . . . . . . 13 𝑖((𝐹𝑡)‘𝑗)
153152nfeq1 2921 . . . . . . . . . . . 12 𝑖((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡)
154150, 153nfim 1900 . . . . . . . . . . 11 𝑖(((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡))
155134anbi2d 628 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) ↔ ((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀))))
156 fveq2 6756 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘𝑗))
157156, 139eqeq12d 2754 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡) ↔ ((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡)))
158155, 157imbi12d 344 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡)) ↔ (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡))))
159154, 158, 98chvarfv 2236 . . . . . . . . . 10 (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡))
160159breq1d 5080 . . . . . . . . 9 (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → (((𝐹𝑡)‘𝑗) < 𝐸 ↔ ((𝑈𝑗)‘𝑡) < 𝐸))
161160biimprd 247 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → (((𝑈𝑗)‘𝑡) < 𝐸 → ((𝐹𝑡)‘𝑗) < 𝐸))
162161reximdva 3202 . . . . . . 7 ((𝜑𝑡𝐷) → (∃𝑗 ∈ (1...𝑀)((𝑈𝑗)‘𝑡) < 𝐸 → ∃𝑗 ∈ (1...𝑀)((𝐹𝑡)‘𝑗) < 𝐸))
163149, 162mpd 15 . . . . . 6 ((𝜑𝑡𝐷) → ∃𝑗 ∈ (1...𝑀)((𝐹𝑡)‘𝑗) < 𝐸)
16480, 82, 83, 84, 85, 68, 99, 102, 104, 163fmul01lt1 43017 . . . . 5 ((𝜑𝑡𝐷) → (seq1( · , (𝐹𝑡))‘𝑀) < 𝐸)
16574, 164eqbrtrd 5092 . . . 4 ((𝜑𝑡𝐷) → (𝑍𝑡) < 𝐸)
16632, 165eqbrtrd 5092 . . 3 ((𝜑𝑡𝐷) → (𝑋𝑡) < 𝐸)
167166ex 412 . 2 (𝜑 → (𝑡𝐷 → (𝑋𝑡) < 𝐸))
1681, 167ralrimi 3139 1 (𝜑 → ∀𝑡𝐷 (𝑋𝑡) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wnf 1787  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883   cuni 4836   class class class wbr 5070  cmpt 5153  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  cle 10941  cn 11903  cuz 12511  +crp 12659  ...cfz 13168  seqcseq 13649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650
This theorem is referenced by:  stoweidlem51  43482
  Copyright terms: Public domain W3C validator