Step | Hyp | Ref
| Expression |
1 | | stoweidlem48.2 |
. 2
⊢
Ⅎ𝑡𝜑 |
2 | | stoweidlem48.12 |
. . . . . 6
⊢ (𝜑 → 𝐷 ⊆ 𝑇) |
3 | 2 | sselda 3917 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 𝑡 ∈ 𝑇) |
4 | | stoweidlem48.1 |
. . . . . 6
⊢
Ⅎ𝑖𝜑 |
5 | | stoweidlem48.3 |
. . . . . . 7
⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} |
6 | | nfra1 3142 |
. . . . . . . 8
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) |
7 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑡𝐴 |
8 | 6, 7 | nfrabw 3311 |
. . . . . . 7
⊢
Ⅎ𝑡{ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} |
9 | 5, 8 | nfcxfr 2904 |
. . . . . 6
⊢
Ⅎ𝑡𝑌 |
10 | | stoweidlem48.4 |
. . . . . 6
⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) |
11 | | stoweidlem48.5 |
. . . . . 6
⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑀) |
12 | | stoweidlem48.6 |
. . . . . 6
⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
13 | | stoweidlem48.7 |
. . . . . 6
⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) |
14 | | stoweidlem48.14 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ V) |
15 | | stoweidlem48.8 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℕ) |
16 | | stoweidlem48.10 |
. . . . . 6
⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) |
17 | 5 | eleq2i 2830 |
. . . . . . . . 9
⊢ (𝑓 ∈ 𝑌 ↔ 𝑓 ∈ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)}) |
18 | | fveq1 6755 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑓 → (ℎ‘𝑡) = (𝑓‘𝑡)) |
19 | 18 | breq2d 5082 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑓 → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ (𝑓‘𝑡))) |
20 | 18 | breq1d 5080 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑓 → ((ℎ‘𝑡) ≤ 1 ↔ (𝑓‘𝑡) ≤ 1)) |
21 | 19, 20 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑓 → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ (𝑓‘𝑡) ∧ (𝑓‘𝑡) ≤ 1))) |
22 | 21 | ralbidv 3120 |
. . . . . . . . . 10
⊢ (ℎ = 𝑓 → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑓‘𝑡) ∧ (𝑓‘𝑡) ≤ 1))) |
23 | 22 | elrab 3617 |
. . . . . . . . 9
⊢ (𝑓 ∈ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} ↔ (𝑓 ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑓‘𝑡) ∧ (𝑓‘𝑡) ≤ 1))) |
24 | 17, 23 | sylbb 218 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝑌 → (𝑓 ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑓‘𝑡) ∧ (𝑓‘𝑡) ≤ 1))) |
25 | 24 | simpld 494 |
. . . . . . 7
⊢ (𝑓 ∈ 𝑌 → 𝑓 ∈ 𝐴) |
26 | | stoweidlem48.15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
27 | 25, 26 | sylan2 592 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) |
28 | | eqid 2738 |
. . . . . . 7
⊢ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) |
29 | | stoweidlem48.16 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
30 | 1, 5, 28, 26, 29 | stoweidlem16 43447 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) |
31 | 4, 9, 10, 11, 12, 13, 14, 15, 16, 27, 30 | fmuldfeq 43014 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑋‘𝑡) = (𝑍‘𝑡)) |
32 | 3, 31 | syldan 590 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝑋‘𝑡) = (𝑍‘𝑡)) |
33 | | elnnuz 12551 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈
(ℤ≥‘1)) |
34 | 15, 33 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
35 | 34 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 𝑀 ∈
(ℤ≥‘1)) |
36 | | nfv 1918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖 𝑡 ∈ 𝑇 |
37 | 4, 36 | nfan 1903 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖(𝜑 ∧ 𝑡 ∈ 𝑇) |
38 | 16 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑈‘𝑖) ∈ 𝑌) |
39 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = (𝑈‘𝑖) → (ℎ‘𝑡) = ((𝑈‘𝑖)‘𝑡)) |
40 | 39 | breq2d 5082 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = (𝑈‘𝑖) → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ ((𝑈‘𝑖)‘𝑡))) |
41 | 39 | breq1d 5080 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = (𝑈‘𝑖) → ((ℎ‘𝑡) ≤ 1 ↔ ((𝑈‘𝑖)‘𝑡) ≤ 1)) |
42 | 40, 41 | anbi12d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = (𝑈‘𝑖) → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ ((𝑈‘𝑖)‘𝑡) ∧ ((𝑈‘𝑖)‘𝑡) ≤ 1))) |
43 | 42 | ralbidv 3120 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑈‘𝑖) → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝑈‘𝑖)‘𝑡) ∧ ((𝑈‘𝑖)‘𝑡) ≤ 1))) |
44 | 43, 5 | elrab2 3620 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈‘𝑖) ∈ 𝑌 ↔ ((𝑈‘𝑖) ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝑈‘𝑖)‘𝑡) ∧ ((𝑈‘𝑖)‘𝑡) ≤ 1))) |
45 | 38, 44 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈‘𝑖) ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝑈‘𝑖)‘𝑡) ∧ ((𝑈‘𝑖)‘𝑡) ≤ 1))) |
46 | 45 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑈‘𝑖) ∈ 𝐴) |
47 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝜑) |
48 | 47, 46 | jca 511 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑈‘𝑖) ∈ 𝐴)) |
49 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑈‘𝑖) → (𝑓 ∈ 𝐴 ↔ (𝑈‘𝑖) ∈ 𝐴)) |
50 | 49 | anbi2d 628 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑈‘𝑖) → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ (𝑈‘𝑖) ∈ 𝐴))) |
51 | | feq1 6565 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑈‘𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈‘𝑖):𝑇⟶ℝ)) |
52 | 50, 51 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑈‘𝑖) → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈‘𝑖) ∈ 𝐴) → (𝑈‘𝑖):𝑇⟶ℝ))) |
53 | 52, 26 | vtoclg 3495 |
. . . . . . . . . . . . . 14
⊢ ((𝑈‘𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝑈‘𝑖) ∈ 𝐴) → (𝑈‘𝑖):𝑇⟶ℝ)) |
54 | 46, 48, 53 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑈‘𝑖):𝑇⟶ℝ) |
55 | 54 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (𝑈‘𝑖):𝑇⟶ℝ) |
56 | | simplr 765 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡 ∈ 𝑇) |
57 | 55, 56 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈‘𝑖)‘𝑡) ∈ ℝ) |
58 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) |
59 | 37, 57, 58 | fmptdf 6973 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)):(1...𝑀)⟶ℝ) |
60 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
61 | | ovex 7288 |
. . . . . . . . . . . . 13
⊢
(1...𝑀) ∈
V |
62 | | mptexg 7079 |
. . . . . . . . . . . . 13
⊢
((1...𝑀) ∈ V
→ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) ∈ V) |
63 | 61, 62 | mp1i 13 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) ∈ V) |
64 | 12 | fvmpt2 6868 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ 𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) ∈ V) → (𝐹‘𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
65 | 60, 63, 64 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
66 | 65 | feq1d 6569 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡):(1...𝑀)⟶ℝ ↔ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)):(1...𝑀)⟶ℝ)) |
67 | 59, 66 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡):(1...𝑀)⟶ℝ) |
68 | 3, 67 | syldan 590 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡):(1...𝑀)⟶ℝ) |
69 | 68 | ffvelrnda 6943 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑘) ∈ ℝ) |
70 | | remulcl 10887 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑘 · 𝑗) ∈ ℝ) |
71 | 70 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ (𝑘 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑘 · 𝑗) ∈ ℝ) |
72 | 35, 69, 71 | seqcl 13671 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (seq1( · , (𝐹‘𝑡))‘𝑀) ∈ ℝ) |
73 | 13 | fvmpt2 6868 |
. . . . . 6
⊢ ((𝑡 ∈ 𝑇 ∧ (seq1( · , (𝐹‘𝑡))‘𝑀) ∈ ℝ) → (𝑍‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑀)) |
74 | 3, 72, 73 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝑍‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑀)) |
75 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑖𝑇 |
76 | | nfmpt1 5178 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) |
77 | 75, 76 | nfmpt 5177 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
78 | 12, 77 | nfcxfr 2904 |
. . . . . . 7
⊢
Ⅎ𝑖𝐹 |
79 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑖𝑡 |
80 | 78, 79 | nffv 6766 |
. . . . . 6
⊢
Ⅎ𝑖(𝐹‘𝑡) |
81 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑖 𝑡 ∈ 𝐷 |
82 | 4, 81 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑖(𝜑 ∧ 𝑡 ∈ 𝐷) |
83 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑗seq1(
· , (𝐹‘𝑡)) |
84 | | eqid 2738 |
. . . . . 6
⊢ seq1(
· , (𝐹‘𝑡)) = seq1( · , (𝐹‘𝑡)) |
85 | 15 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 𝑀 ∈ ℕ) |
86 | | simpll 763 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 𝜑) |
87 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (1...𝑀)) |
88 | 3 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡 ∈ 𝑇) |
89 | 45 | simprd 495 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ 𝑇 (0 ≤ ((𝑈‘𝑖)‘𝑡) ∧ ((𝑈‘𝑖)‘𝑡) ≤ 1)) |
90 | 89 | r19.21bi 3132 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ 𝑇) → (0 ≤ ((𝑈‘𝑖)‘𝑡) ∧ ((𝑈‘𝑖)‘𝑡) ≤ 1)) |
91 | 90 | simpld 494 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ 𝑇) → 0 ≤ ((𝑈‘𝑖)‘𝑡)) |
92 | 86, 87, 88, 91 | syl21anc 834 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ ((𝑈‘𝑖)‘𝑡)) |
93 | 65 | fveq1d 6758 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘𝑖)) |
94 | 86, 88, 93 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘𝑖)) |
95 | 86, 88, 87, 57 | syl21anc 834 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈‘𝑖)‘𝑡) ∈ ℝ) |
96 | 58 | fvmpt2 6868 |
. . . . . . . . 9
⊢ ((𝑖 ∈ (1...𝑀) ∧ ((𝑈‘𝑖)‘𝑡) ∈ ℝ) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘𝑖) = ((𝑈‘𝑖)‘𝑡)) |
97 | 87, 95, 96 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘𝑖) = ((𝑈‘𝑖)‘𝑡)) |
98 | 94, 97 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑖) = ((𝑈‘𝑖)‘𝑡)) |
99 | 92, 98 | breqtrrd 5098 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ ((𝐹‘𝑡)‘𝑖)) |
100 | 90 | simprd 495 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ 𝑇) → ((𝑈‘𝑖)‘𝑡) ≤ 1) |
101 | 86, 87, 88, 100 | syl21anc 834 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈‘𝑖)‘𝑡) ≤ 1) |
102 | 98, 101 | eqbrtrd 5092 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑖) ≤ 1) |
103 | | stoweidlem48.17 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
104 | 103 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 𝐸 ∈
ℝ+) |
105 | | stoweidlem48.11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ⊆ ∪ ran
𝑊) |
106 | 105 | sselda 3917 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 𝑡 ∈ ∪ ran
𝑊) |
107 | | eluni 4839 |
. . . . . . . . . 10
⊢ (𝑡 ∈ ∪ ran 𝑊 ↔ ∃𝑤(𝑡 ∈ 𝑤 ∧ 𝑤 ∈ ran 𝑊)) |
108 | 106, 107 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ∃𝑤(𝑡 ∈ 𝑤 ∧ 𝑤 ∈ ran 𝑊)) |
109 | | stoweidlem48.9 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑊:(1...𝑀)⟶𝑉) |
110 | | ffn 6584 |
. . . . . . . . . . . . . . . 16
⊢ (𝑊:(1...𝑀)⟶𝑉 → 𝑊 Fn (1...𝑀)) |
111 | | fvelrnb 6812 |
. . . . . . . . . . . . . . . 16
⊢ (𝑊 Fn (1...𝑀) → (𝑤 ∈ ran 𝑊 ↔ ∃𝑗 ∈ (1...𝑀)(𝑊‘𝑗) = 𝑤)) |
112 | 109, 110,
111 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑤 ∈ ran 𝑊 ↔ ∃𝑗 ∈ (1...𝑀)(𝑊‘𝑗) = 𝑤)) |
113 | 112 | biimpa 476 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)(𝑊‘𝑗) = 𝑤) |
114 | 113 | adantrl 712 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ ran 𝑊)) → ∃𝑗 ∈ (1...𝑀)(𝑊‘𝑗) = 𝑤) |
115 | | simplr 765 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑤) ∧ (𝑊‘𝑗) = 𝑤) → 𝑡 ∈ 𝑤) |
116 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑤) ∧ (𝑊‘𝑗) = 𝑤) → (𝑊‘𝑗) = 𝑤) |
117 | 115, 116 | eleqtrrd 2842 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑤) ∧ (𝑊‘𝑗) = 𝑤) → 𝑡 ∈ (𝑊‘𝑗)) |
118 | 117 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑤) → ((𝑊‘𝑗) = 𝑤 → 𝑡 ∈ (𝑊‘𝑗))) |
119 | 118 | reximdv 3201 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑤) → (∃𝑗 ∈ (1...𝑀)(𝑊‘𝑗) = 𝑤 → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊‘𝑗))) |
120 | 119 | adantrr 713 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ ran 𝑊)) → (∃𝑗 ∈ (1...𝑀)(𝑊‘𝑗) = 𝑤 → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊‘𝑗))) |
121 | 114, 120 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ ran 𝑊)) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊‘𝑗)) |
122 | 121 | ex 412 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑡 ∈ 𝑤 ∧ 𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊‘𝑗))) |
123 | 122 | exlimdv 1937 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑤(𝑡 ∈ 𝑤 ∧ 𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊‘𝑗))) |
124 | 123 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (∃𝑤(𝑡 ∈ 𝑤 ∧ 𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊‘𝑗))) |
125 | 108, 124 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊‘𝑗)) |
126 | | simplll 771 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑗)) → 𝜑) |
127 | | simplr 765 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑗)) → 𝑗 ∈ (1...𝑀)) |
128 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑗)) → 𝑡 ∈ (𝑊‘𝑗)) |
129 | | nfv 1918 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑖 𝑗 ∈ (1...𝑀) |
130 | | nfv 1918 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑖 𝑡 ∈ (𝑊‘𝑗) |
131 | 4, 129, 130 | nf3an 1905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖(𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊‘𝑗)) |
132 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖((𝑈‘𝑗)‘𝑡) < 𝐸 |
133 | 131, 132 | nfim 1900 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊‘𝑗)) → ((𝑈‘𝑗)‘𝑡) < 𝐸) |
134 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (𝑖 ∈ (1...𝑀) ↔ 𝑗 ∈ (1...𝑀))) |
135 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → (𝑊‘𝑖) = (𝑊‘𝑗)) |
136 | 135 | eleq2d 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (𝑡 ∈ (𝑊‘𝑖) ↔ 𝑡 ∈ (𝑊‘𝑗))) |
137 | 134, 136 | 3anbi23d 1437 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → ((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊‘𝑖)) ↔ (𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊‘𝑗)))) |
138 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → (𝑈‘𝑖) = (𝑈‘𝑗)) |
139 | 138 | fveq1d 6758 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → ((𝑈‘𝑖)‘𝑡) = ((𝑈‘𝑗)‘𝑡)) |
140 | 139 | breq1d 5080 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (((𝑈‘𝑖)‘𝑡) < 𝐸 ↔ ((𝑈‘𝑗)‘𝑡) < 𝐸)) |
141 | 137, 140 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊‘𝑖)) → ((𝑈‘𝑖)‘𝑡) < 𝐸) ↔ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊‘𝑗)) → ((𝑈‘𝑗)‘𝑡) < 𝐸))) |
142 | | stoweidlem48.13 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊‘𝑖)((𝑈‘𝑖)‘𝑡) < 𝐸) |
143 | 142 | r19.21bi 3132 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → ((𝑈‘𝑖)‘𝑡) < 𝐸) |
144 | 143 | 3impa 1108 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊‘𝑖)) → ((𝑈‘𝑖)‘𝑡) < 𝐸) |
145 | 133, 141,
144 | chvarfv 2236 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊‘𝑗)) → ((𝑈‘𝑗)‘𝑡) < 𝐸) |
146 | 126, 127,
128, 145 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑗)) → ((𝑈‘𝑗)‘𝑡) < 𝐸) |
147 | 146 | ex 412 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑗 ∈ (1...𝑀)) → (𝑡 ∈ (𝑊‘𝑗) → ((𝑈‘𝑗)‘𝑡) < 𝐸)) |
148 | 147 | reximdva 3202 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊‘𝑗) → ∃𝑗 ∈ (1...𝑀)((𝑈‘𝑗)‘𝑡) < 𝐸)) |
149 | 125, 148 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ∃𝑗 ∈ (1...𝑀)((𝑈‘𝑗)‘𝑡) < 𝐸) |
150 | 82, 129 | nfan 1903 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑗 ∈ (1...𝑀)) |
151 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑖𝑗 |
152 | 80, 151 | nffv 6766 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖((𝐹‘𝑡)‘𝑗) |
153 | 152 | nfeq1 2921 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖((𝐹‘𝑡)‘𝑗) = ((𝑈‘𝑗)‘𝑡) |
154 | 150, 153 | nfim 1900 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖(((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑗 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑗) = ((𝑈‘𝑗)‘𝑡)) |
155 | 134 | anbi2d 628 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑖 ∈ (1...𝑀)) ↔ ((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑗 ∈ (1...𝑀)))) |
156 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → ((𝐹‘𝑡)‘𝑖) = ((𝐹‘𝑡)‘𝑗)) |
157 | 156, 139 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (((𝐹‘𝑡)‘𝑖) = ((𝑈‘𝑖)‘𝑡) ↔ ((𝐹‘𝑡)‘𝑗) = ((𝑈‘𝑗)‘𝑡))) |
158 | 155, 157 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑖) = ((𝑈‘𝑖)‘𝑡)) ↔ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑗 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑗) = ((𝑈‘𝑗)‘𝑡)))) |
159 | 154, 158,
98 | chvarfv 2236 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑗 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑗) = ((𝑈‘𝑗)‘𝑡)) |
160 | 159 | breq1d 5080 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑗 ∈ (1...𝑀)) → (((𝐹‘𝑡)‘𝑗) < 𝐸 ↔ ((𝑈‘𝑗)‘𝑡) < 𝐸)) |
161 | 160 | biimprd 247 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐷) ∧ 𝑗 ∈ (1...𝑀)) → (((𝑈‘𝑗)‘𝑡) < 𝐸 → ((𝐹‘𝑡)‘𝑗) < 𝐸)) |
162 | 161 | reximdva 3202 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (∃𝑗 ∈ (1...𝑀)((𝑈‘𝑗)‘𝑡) < 𝐸 → ∃𝑗 ∈ (1...𝑀)((𝐹‘𝑡)‘𝑗) < 𝐸)) |
163 | 149, 162 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ∃𝑗 ∈ (1...𝑀)((𝐹‘𝑡)‘𝑗) < 𝐸) |
164 | 80, 82, 83, 84, 85, 68, 99, 102, 104, 163 | fmul01lt1 43017 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (seq1( · , (𝐹‘𝑡))‘𝑀) < 𝐸) |
165 | 74, 164 | eqbrtrd 5092 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝑍‘𝑡) < 𝐸) |
166 | 32, 165 | eqbrtrd 5092 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝑋‘𝑡) < 𝐸) |
167 | 166 | ex 412 |
. 2
⊢ (𝜑 → (𝑡 ∈ 𝐷 → (𝑋‘𝑡) < 𝐸)) |
168 | 1, 167 | ralrimi 3139 |
1
⊢ (𝜑 → ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸) |