Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem48 Structured version   Visualization version   GIF version

Theorem stoweidlem48 46053
Description: This lemma is used to prove that 𝑥 built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x < ε on 𝐴. Here 𝑋 is used to represent 𝑥 in the paper, 𝐸 is used to represent ε in the paper, and 𝐷 is used to represent 𝐴 in the paper (because 𝐴 is always used to represent the subalgebra). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem48.1 𝑖𝜑
stoweidlem48.2 𝑡𝜑
stoweidlem48.3 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem48.4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem48.5 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
stoweidlem48.6 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
stoweidlem48.7 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem48.8 (𝜑𝑀 ∈ ℕ)
stoweidlem48.9 (𝜑𝑊:(1...𝑀)⟶𝑉)
stoweidlem48.10 (𝜑𝑈:(1...𝑀)⟶𝑌)
stoweidlem48.11 (𝜑𝐷 ran 𝑊)
stoweidlem48.12 (𝜑𝐷𝑇)
stoweidlem48.13 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < 𝐸)
stoweidlem48.14 (𝜑𝑇 ∈ V)
stoweidlem48.15 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem48.16 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem48.17 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweidlem48 (𝜑 → ∀𝑡𝐷 (𝑋𝑡) < 𝐸)
Distinct variable groups:   𝑓,𝑔,,𝑡,𝐴   𝑓,𝑖,𝑇,,𝑡   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔   𝑈,𝑓,𝑔,,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑇,𝑔   𝐷,𝑖   𝑖,𝐸   𝑖,𝑀   𝑈,𝑖   𝑖,𝑊
Allowed substitution hints:   𝜑(𝑡,,𝑖)   𝐴(𝑖)   𝐷(𝑡,𝑓,𝑔,)   𝑃(𝑡,𝑓,𝑔,,𝑖)   𝐸(𝑡,𝑓,𝑔,)   𝐹(𝑡,,𝑖)   𝑀(𝑡,)   𝑉(𝑡,𝑓,𝑔,,𝑖)   𝑊(𝑡,𝑓,𝑔,)   𝑋(𝑡,𝑓,𝑔,,𝑖)   𝑌(𝑡,,𝑖)   𝑍(𝑡,𝑓,𝑔,,𝑖)

Proof of Theorem stoweidlem48
Dummy variables 𝑗 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem48.2 . 2 𝑡𝜑
2 stoweidlem48.12 . . . . . 6 (𝜑𝐷𝑇)
32sselda 3949 . . . . 5 ((𝜑𝑡𝐷) → 𝑡𝑇)
4 stoweidlem48.1 . . . . . 6 𝑖𝜑
5 stoweidlem48.3 . . . . . . 7 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
6 nfra1 3262 . . . . . . . 8 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
7 nfcv 2892 . . . . . . . 8 𝑡𝐴
86, 7nfrabw 3446 . . . . . . 7 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
95, 8nfcxfr 2890 . . . . . 6 𝑡𝑌
10 stoweidlem48.4 . . . . . 6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
11 stoweidlem48.5 . . . . . 6 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
12 stoweidlem48.6 . . . . . 6 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
13 stoweidlem48.7 . . . . . 6 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
14 stoweidlem48.14 . . . . . 6 (𝜑𝑇 ∈ V)
15 stoweidlem48.8 . . . . . 6 (𝜑𝑀 ∈ ℕ)
16 stoweidlem48.10 . . . . . 6 (𝜑𝑈:(1...𝑀)⟶𝑌)
175eleq2i 2821 . . . . . . . . 9 (𝑓𝑌𝑓 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
18 fveq1 6860 . . . . . . . . . . . . 13 ( = 𝑓 → (𝑡) = (𝑓𝑡))
1918breq2d 5122 . . . . . . . . . . . 12 ( = 𝑓 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑓𝑡)))
2018breq1d 5120 . . . . . . . . . . . 12 ( = 𝑓 → ((𝑡) ≤ 1 ↔ (𝑓𝑡) ≤ 1))
2119, 20anbi12d 632 . . . . . . . . . . 11 ( = 𝑓 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
2221ralbidv 3157 . . . . . . . . . 10 ( = 𝑓 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
2322elrab 3662 . . . . . . . . 9 (𝑓 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↔ (𝑓𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
2417, 23sylbb 219 . . . . . . . 8 (𝑓𝑌 → (𝑓𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
2524simpld 494 . . . . . . 7 (𝑓𝑌𝑓𝐴)
26 stoweidlem48.15 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2725, 26sylan2 593 . . . . . 6 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
28 eqid 2730 . . . . . . 7 (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
29 stoweidlem48.16 . . . . . . 7 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
301, 5, 28, 26, 29stoweidlem16 46021 . . . . . 6 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
314, 9, 10, 11, 12, 13, 14, 15, 16, 27, 30fmuldfeq 45588 . . . . 5 ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
323, 31syldan 591 . . . 4 ((𝜑𝑡𝐷) → (𝑋𝑡) = (𝑍𝑡))
33 elnnuz 12844 . . . . . . . . 9 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
3415, 33sylib 218 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘1))
3534adantr 480 . . . . . . 7 ((𝜑𝑡𝐷) → 𝑀 ∈ (ℤ‘1))
36 nfv 1914 . . . . . . . . . . . 12 𝑖 𝑡𝑇
374, 36nfan 1899 . . . . . . . . . . 11 𝑖(𝜑𝑡𝑇)
3816ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
39 fveq1 6860 . . . . . . . . . . . . . . . . . . . 20 ( = (𝑈𝑖) → (𝑡) = ((𝑈𝑖)‘𝑡))
4039breq2d 5122 . . . . . . . . . . . . . . . . . . 19 ( = (𝑈𝑖) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝑈𝑖)‘𝑡)))
4139breq1d 5120 . . . . . . . . . . . . . . . . . . 19 ( = (𝑈𝑖) → ((𝑡) ≤ 1 ↔ ((𝑈𝑖)‘𝑡) ≤ 1))
4240, 41anbi12d 632 . . . . . . . . . . . . . . . . . 18 ( = (𝑈𝑖) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
4342ralbidv 3157 . . . . . . . . . . . . . . . . 17 ( = (𝑈𝑖) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
4443, 5elrab2 3665 . . . . . . . . . . . . . . . 16 ((𝑈𝑖) ∈ 𝑌 ↔ ((𝑈𝑖) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
4538, 44sylib 218 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑈𝑖) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
4645simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝐴)
47 simpl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
4847, 46jca 511 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑈𝑖) ∈ 𝐴))
49 eleq1 2817 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑈𝑖) → (𝑓𝐴 ↔ (𝑈𝑖) ∈ 𝐴))
5049anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝐴)))
51 feq1 6669 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
5250, 51imbi12d 344 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ)))
5352, 26vtoclg 3523 . . . . . . . . . . . . . 14 ((𝑈𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ))
5446, 48, 53sylc 65 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
5554adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
56 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
5755, 56ffvelcdmd 7060 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
58 eqid 2730 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
5937, 57, 58fmptdf 7092 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ)
60 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → 𝑡𝑇)
61 ovex 7423 . . . . . . . . . . . . 13 (1...𝑀) ∈ V
62 mptexg 7198 . . . . . . . . . . . . 13 ((1...𝑀) ∈ V → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
6361, 62mp1i 13 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
6412fvmpt2 6982 . . . . . . . . . . . 12 ((𝑡𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6560, 63, 64syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6665feq1d 6673 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝐹𝑡):(1...𝑀)⟶ℝ ↔ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ))
6759, 66mpbird 257 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡):(1...𝑀)⟶ℝ)
683, 67syldan 591 . . . . . . . 8 ((𝜑𝑡𝐷) → (𝐹𝑡):(1...𝑀)⟶ℝ)
6968ffvelcdmda 7059 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑘) ∈ ℝ)
70 remulcl 11160 . . . . . . . 8 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑘 · 𝑗) ∈ ℝ)
7170adantl 481 . . . . . . 7 (((𝜑𝑡𝐷) ∧ (𝑘 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑘 · 𝑗) ∈ ℝ)
7235, 69, 71seqcl 13994 . . . . . 6 ((𝜑𝑡𝐷) → (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ)
7313fvmpt2 6982 . . . . . 6 ((𝑡𝑇 ∧ (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
743, 72, 73syl2anc 584 . . . . 5 ((𝜑𝑡𝐷) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
75 nfcv 2892 . . . . . . . . 9 𝑖𝑇
76 nfmpt1 5209 . . . . . . . . 9 𝑖(𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
7775, 76nfmpt 5208 . . . . . . . 8 𝑖(𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
7812, 77nfcxfr 2890 . . . . . . 7 𝑖𝐹
79 nfcv 2892 . . . . . . 7 𝑖𝑡
8078, 79nffv 6871 . . . . . 6 𝑖(𝐹𝑡)
81 nfv 1914 . . . . . . 7 𝑖 𝑡𝐷
824, 81nfan 1899 . . . . . 6 𝑖(𝜑𝑡𝐷)
83 nfcv 2892 . . . . . 6 𝑗seq1( · , (𝐹𝑡))
84 eqid 2730 . . . . . 6 seq1( · , (𝐹𝑡)) = seq1( · , (𝐹𝑡))
8515adantr 480 . . . . . 6 ((𝜑𝑡𝐷) → 𝑀 ∈ ℕ)
86 simpll 766 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 𝜑)
87 simpr 484 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (1...𝑀))
883adantr 480 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
8945simprd 495 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1))
9089r19.21bi 3230 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝑇) → (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1))
9190simpld 494 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝑇) → 0 ≤ ((𝑈𝑖)‘𝑡))
9286, 87, 88, 91syl21anc 837 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ ((𝑈𝑖)‘𝑡))
9365fveq1d 6863 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖))
9486, 88, 93syl2anc 584 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖))
9586, 88, 87, 57syl21anc 837 . . . . . . . . 9 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
9658fvmpt2 6982 . . . . . . . . 9 ((𝑖 ∈ (1...𝑀) ∧ ((𝑈𝑖)‘𝑡) ∈ ℝ) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑈𝑖)‘𝑡))
9787, 95, 96syl2anc 584 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑈𝑖)‘𝑡))
9894, 97eqtrd 2765 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡))
9992, 98breqtrrd 5138 . . . . . 6 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ ((𝐹𝑡)‘𝑖))
10090simprd 495 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝑇) → ((𝑈𝑖)‘𝑡) ≤ 1)
10186, 87, 88, 100syl21anc 837 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ≤ 1)
10298, 101eqbrtrd 5132 . . . . . 6 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ≤ 1)
103 stoweidlem48.17 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
104103adantr 480 . . . . . 6 ((𝜑𝑡𝐷) → 𝐸 ∈ ℝ+)
105 stoweidlem48.11 . . . . . . . . . . 11 (𝜑𝐷 ran 𝑊)
106105sselda 3949 . . . . . . . . . 10 ((𝜑𝑡𝐷) → 𝑡 ran 𝑊)
107 eluni 4877 . . . . . . . . . 10 (𝑡 ran 𝑊 ↔ ∃𝑤(𝑡𝑤𝑤 ∈ ran 𝑊))
108106, 107sylib 218 . . . . . . . . 9 ((𝜑𝑡𝐷) → ∃𝑤(𝑡𝑤𝑤 ∈ ran 𝑊))
109 stoweidlem48.9 . . . . . . . . . . . . . . . 16 (𝜑𝑊:(1...𝑀)⟶𝑉)
110 ffn 6691 . . . . . . . . . . . . . . . 16 (𝑊:(1...𝑀)⟶𝑉𝑊 Fn (1...𝑀))
111 fvelrnb 6924 . . . . . . . . . . . . . . . 16 (𝑊 Fn (1...𝑀) → (𝑤 ∈ ran 𝑊 ↔ ∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤))
112109, 110, 1113syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ ran 𝑊 ↔ ∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤))
113112biimpa 476 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤)
114113adantrl 716 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑤𝑤 ∈ ran 𝑊)) → ∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤)
115 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑤) ∧ (𝑊𝑗) = 𝑤) → 𝑡𝑤)
116 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑤) ∧ (𝑊𝑗) = 𝑤) → (𝑊𝑗) = 𝑤)
117115, 116eleqtrrd 2832 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑤) ∧ (𝑊𝑗) = 𝑤) → 𝑡 ∈ (𝑊𝑗))
118117ex 412 . . . . . . . . . . . . . . 15 ((𝜑𝑡𝑤) → ((𝑊𝑗) = 𝑤𝑡 ∈ (𝑊𝑗)))
119118reximdv 3149 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑤) → (∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤 → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
120119adantrr 717 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑤𝑤 ∈ ran 𝑊)) → (∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤 → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
121114, 120mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑤𝑤 ∈ ran 𝑊)) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗))
122121ex 412 . . . . . . . . . . 11 (𝜑 → ((𝑡𝑤𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
123122exlimdv 1933 . . . . . . . . . 10 (𝜑 → (∃𝑤(𝑡𝑤𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
124123adantr 480 . . . . . . . . 9 ((𝜑𝑡𝐷) → (∃𝑤(𝑡𝑤𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
125108, 124mpd 15 . . . . . . . 8 ((𝜑𝑡𝐷) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗))
126 simplll 774 . . . . . . . . . . 11 ((((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑗)) → 𝜑)
127 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑗)) → 𝑗 ∈ (1...𝑀))
128 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑗)) → 𝑡 ∈ (𝑊𝑗))
129 nfv 1914 . . . . . . . . . . . . . 14 𝑖 𝑗 ∈ (1...𝑀)
130 nfv 1914 . . . . . . . . . . . . . 14 𝑖 𝑡 ∈ (𝑊𝑗)
1314, 129, 130nf3an 1901 . . . . . . . . . . . . 13 𝑖(𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗))
132 nfv 1914 . . . . . . . . . . . . 13 𝑖((𝑈𝑗)‘𝑡) < 𝐸
133131, 132nfim 1896 . . . . . . . . . . . 12 𝑖((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗)) → ((𝑈𝑗)‘𝑡) < 𝐸)
134 eleq1 2817 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑖 ∈ (1...𝑀) ↔ 𝑗 ∈ (1...𝑀)))
135 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑊𝑖) = (𝑊𝑗))
136135eleq2d 2815 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑡 ∈ (𝑊𝑖) ↔ 𝑡 ∈ (𝑊𝑗)))
137134, 1363anbi23d 1441 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑖)) ↔ (𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗))))
138 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑈𝑖) = (𝑈𝑗))
139138fveq1d 6863 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((𝑈𝑖)‘𝑡) = ((𝑈𝑗)‘𝑡))
140139breq1d 5120 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (((𝑈𝑖)‘𝑡) < 𝐸 ↔ ((𝑈𝑗)‘𝑡) < 𝐸))
141137, 140imbi12d 344 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < 𝐸) ↔ ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗)) → ((𝑈𝑗)‘𝑡) < 𝐸)))
142 stoweidlem48.13 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < 𝐸)
143142r19.21bi 3230 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < 𝐸)
1441433impa 1109 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < 𝐸)
145133, 141, 144chvarfv 2241 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗)) → ((𝑈𝑗)‘𝑡) < 𝐸)
146126, 127, 128, 145syl3anc 1373 . . . . . . . . . 10 ((((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑗)) → ((𝑈𝑗)‘𝑡) < 𝐸)
147146ex 412 . . . . . . . . 9 (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → (𝑡 ∈ (𝑊𝑗) → ((𝑈𝑗)‘𝑡) < 𝐸))
148147reximdva 3147 . . . . . . . 8 ((𝜑𝑡𝐷) → (∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗) → ∃𝑗 ∈ (1...𝑀)((𝑈𝑗)‘𝑡) < 𝐸))
149125, 148mpd 15 . . . . . . 7 ((𝜑𝑡𝐷) → ∃𝑗 ∈ (1...𝑀)((𝑈𝑗)‘𝑡) < 𝐸)
15082, 129nfan 1899 . . . . . . . . . . . 12 𝑖((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀))
151 nfcv 2892 . . . . . . . . . . . . . 14 𝑖𝑗
15280, 151nffv 6871 . . . . . . . . . . . . 13 𝑖((𝐹𝑡)‘𝑗)
153152nfeq1 2908 . . . . . . . . . . . 12 𝑖((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡)
154150, 153nfim 1896 . . . . . . . . . . 11 𝑖(((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡))
155134anbi2d 630 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) ↔ ((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀))))
156 fveq2 6861 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘𝑗))
157156, 139eqeq12d 2746 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡) ↔ ((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡)))
158155, 157imbi12d 344 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡)) ↔ (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡))))
159154, 158, 98chvarfv 2241 . . . . . . . . . 10 (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡))
160159breq1d 5120 . . . . . . . . 9 (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → (((𝐹𝑡)‘𝑗) < 𝐸 ↔ ((𝑈𝑗)‘𝑡) < 𝐸))
161160biimprd 248 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → (((𝑈𝑗)‘𝑡) < 𝐸 → ((𝐹𝑡)‘𝑗) < 𝐸))
162161reximdva 3147 . . . . . . 7 ((𝜑𝑡𝐷) → (∃𝑗 ∈ (1...𝑀)((𝑈𝑗)‘𝑡) < 𝐸 → ∃𝑗 ∈ (1...𝑀)((𝐹𝑡)‘𝑗) < 𝐸))
163149, 162mpd 15 . . . . . 6 ((𝜑𝑡𝐷) → ∃𝑗 ∈ (1...𝑀)((𝐹𝑡)‘𝑗) < 𝐸)
16480, 82, 83, 84, 85, 68, 99, 102, 104, 163fmul01lt1 45591 . . . . 5 ((𝜑𝑡𝐷) → (seq1( · , (𝐹𝑡))‘𝑀) < 𝐸)
16574, 164eqbrtrd 5132 . . . 4 ((𝜑𝑡𝐷) → (𝑍𝑡) < 𝐸)
16632, 165eqbrtrd 5132 . . 3 ((𝜑𝑡𝐷) → (𝑋𝑡) < 𝐸)
167166ex 412 . 2 (𝜑 → (𝑡𝐷 → (𝑋𝑡) < 𝐸))
1681, 167ralrimi 3236 1 (𝜑 → ∀𝑡𝐷 (𝑋𝑡) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917   cuni 4874   class class class wbr 5110  cmpt 5191  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216  cn 12193  cuz 12800  +crp 12958  ...cfz 13475  seqcseq 13973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974
This theorem is referenced by:  stoweidlem51  46056
  Copyright terms: Public domain W3C validator