| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppmapnn0ub | Structured version Visualization version GIF version | ||
| Description: If a function over the nonnegative integers is finitely supported, then there is an upper bound for the arguments resulting in nonzero values. (Contributed by AV, 6-Oct-2019.) |
| Ref | Expression |
|---|---|
| fsuppmapnn0ub | ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ (((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) ∧ 𝐹 finSupp 𝑍) → 𝐹 finSupp 𝑍) | |
| 2 | 1 | fsuppimpd 9260 | . . 3 ⊢ (((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) ∧ 𝐹 finSupp 𝑍) → (𝐹 supp 𝑍) ∈ Fin) |
| 3 | 2 | ex 412 | . 2 ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin)) |
| 4 | elmapfn 8795 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 ↑m ℕ0) → 𝐹 Fn ℕ0) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → 𝐹 Fn ℕ0) |
| 6 | nn0ex 12394 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → ℕ0 ∈ V) |
| 8 | simpr 484 | . . . . 5 ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → 𝑍 ∈ 𝑉) | |
| 9 | suppvalfn 8104 | . . . . 5 ⊢ ((𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝐹‘𝑥) ≠ 𝑍}) | |
| 10 | 5, 7, 8, 9 | syl3anc 1373 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝐹‘𝑥) ≠ 𝑍}) |
| 11 | 10 | eleq1d 2818 | . . 3 ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) ∈ Fin ↔ {𝑥 ∈ ℕ0 ∣ (𝐹‘𝑥) ≠ 𝑍} ∈ Fin)) |
| 12 | rabssnn0fi 13895 | . . . 4 ⊢ ({𝑥 ∈ ℕ0 ∣ (𝐹‘𝑥) ≠ 𝑍} ∈ Fin ↔ ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹‘𝑥) ≠ 𝑍)) | |
| 13 | nne 2933 | . . . . . . 7 ⊢ (¬ (𝐹‘𝑥) ≠ 𝑍 ↔ (𝐹‘𝑥) = 𝑍) | |
| 14 | 13 | imbi2i 336 | . . . . . 6 ⊢ ((𝑚 < 𝑥 → ¬ (𝐹‘𝑥) ≠ 𝑍) ↔ (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) |
| 15 | 14 | ralbii 3079 | . . . . 5 ⊢ (∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹‘𝑥) ≠ 𝑍) ↔ ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) |
| 16 | 15 | rexbii 3080 | . . . 4 ⊢ (∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹‘𝑥) ≠ 𝑍) ↔ ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) |
| 17 | 12, 16 | sylbb 219 | . . 3 ⊢ ({𝑥 ∈ ℕ0 ∣ (𝐹‘𝑥) ≠ 𝑍} ∈ Fin → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) |
| 18 | 11, 17 | biimtrdi 253 | . 2 ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) ∈ Fin → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍))) |
| 19 | 3, 18 | syld 47 | 1 ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 {crab 3396 Vcvv 3437 class class class wbr 5093 Fn wfn 6481 ‘cfv 6486 (class class class)co 7352 supp csupp 8096 ↑m cmap 8756 Fincfn 8875 finSupp cfsupp 9252 < clt 11153 ℕ0cn0 12388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 |
| This theorem is referenced by: fsuppmapnn0fz 13905 nn0gsumfz 19898 mptcoe1fsupp 22129 coe1ae0 22130 gsummoncoe1 22224 mptcoe1matfsupp 22718 mp2pm2mplem4 22725 pm2mp 22741 cayhamlem4 22804 |
| Copyright terms: Public domain | W3C validator |