MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0ub Structured version   Visualization version   GIF version

Theorem fsuppmapnn0ub 14013
Description: If a function over the nonnegative integers is finitely supported, then there is an upper bound for the arguments resulting in nonzero values. (Contributed by AV, 6-Oct-2019.)
Assertion
Ref Expression
fsuppmapnn0ub ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍)))
Distinct variable groups:   𝑚,𝐹,𝑥   𝑥,𝑉   𝑚,𝑍,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑚)   𝑉(𝑚)

Proof of Theorem fsuppmapnn0ub
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) ∧ 𝐹 finSupp 𝑍) → 𝐹 finSupp 𝑍)
21fsuppimpd 9381 . . 3 (((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) ∧ 𝐹 finSupp 𝑍) → (𝐹 supp 𝑍) ∈ Fin)
32ex 412 . 2 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin))
4 elmapfn 8879 . . . . . 6 (𝐹 ∈ (𝑅m0) → 𝐹 Fn ℕ0)
54adantr 480 . . . . 5 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → 𝐹 Fn ℕ0)
6 nn0ex 12507 . . . . . 6 0 ∈ V
76a1i 11 . . . . 5 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → ℕ0 ∈ V)
8 simpr 484 . . . . 5 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → 𝑍𝑉)
9 suppvalfn 8167 . . . . 5 ((𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉) → (𝐹 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝐹𝑥) ≠ 𝑍})
105, 7, 8, 9syl3anc 1373 . . . 4 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → (𝐹 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝐹𝑥) ≠ 𝑍})
1110eleq1d 2819 . . 3 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → ((𝐹 supp 𝑍) ∈ Fin ↔ {𝑥 ∈ ℕ0 ∣ (𝐹𝑥) ≠ 𝑍} ∈ Fin))
12 rabssnn0fi 14004 . . . 4 ({𝑥 ∈ ℕ0 ∣ (𝐹𝑥) ≠ 𝑍} ∈ Fin ↔ ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹𝑥) ≠ 𝑍))
13 nne 2936 . . . . . . 7 (¬ (𝐹𝑥) ≠ 𝑍 ↔ (𝐹𝑥) = 𝑍)
1413imbi2i 336 . . . . . 6 ((𝑚 < 𝑥 → ¬ (𝐹𝑥) ≠ 𝑍) ↔ (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍))
1514ralbii 3082 . . . . 5 (∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹𝑥) ≠ 𝑍) ↔ ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍))
1615rexbii 3083 . . . 4 (∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹𝑥) ≠ 𝑍) ↔ ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍))
1712, 16sylbb 219 . . 3 ({𝑥 ∈ ℕ0 ∣ (𝐹𝑥) ≠ 𝑍} ∈ Fin → ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍))
1811, 17biimtrdi 253 . 2 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → ((𝐹 supp 𝑍) ∈ Fin → ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍)))
193, 18syld 47 1 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  Vcvv 3459   class class class wbr 5119   Fn wfn 6526  cfv 6531  (class class class)co 7405   supp csupp 8159  m cmap 8840  Fincfn 8959   finSupp cfsupp 9373   < clt 11269  0cn0 12501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525
This theorem is referenced by:  fsuppmapnn0fz  14014  nn0gsumfz  19965  mptcoe1fsupp  22151  coe1ae0  22152  gsummoncoe1  22246  mptcoe1matfsupp  22740  mp2pm2mplem4  22747  pm2mp  22763  cayhamlem4  22826
  Copyright terms: Public domain W3C validator