MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0ub Structured version   Visualization version   GIF version

Theorem fsuppmapnn0ub 13715
Description: If a function over the nonnegative integers is finitely supported, then there is an upper bound for the arguments resulting in nonzero values. (Contributed by AV, 6-Oct-2019.)
Assertion
Ref Expression
fsuppmapnn0ub ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍)))
Distinct variable groups:   𝑚,𝐹,𝑥   𝑥,𝑉   𝑚,𝑍,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑚)   𝑉(𝑚)

Proof of Theorem fsuppmapnn0ub
StepHypRef Expression
1 simpr 485 . . . 4 (((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) ∧ 𝐹 finSupp 𝑍) → 𝐹 finSupp 𝑍)
21fsuppimpd 9135 . . 3 (((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) ∧ 𝐹 finSupp 𝑍) → (𝐹 supp 𝑍) ∈ Fin)
32ex 413 . 2 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin))
4 elmapfn 8653 . . . . . 6 (𝐹 ∈ (𝑅m0) → 𝐹 Fn ℕ0)
54adantr 481 . . . . 5 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → 𝐹 Fn ℕ0)
6 nn0ex 12239 . . . . . 6 0 ∈ V
76a1i 11 . . . . 5 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → ℕ0 ∈ V)
8 simpr 485 . . . . 5 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → 𝑍𝑉)
9 suppvalfn 7985 . . . . 5 ((𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉) → (𝐹 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝐹𝑥) ≠ 𝑍})
105, 7, 8, 9syl3anc 1370 . . . 4 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → (𝐹 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝐹𝑥) ≠ 𝑍})
1110eleq1d 2823 . . 3 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → ((𝐹 supp 𝑍) ∈ Fin ↔ {𝑥 ∈ ℕ0 ∣ (𝐹𝑥) ≠ 𝑍} ∈ Fin))
12 rabssnn0fi 13706 . . . 4 ({𝑥 ∈ ℕ0 ∣ (𝐹𝑥) ≠ 𝑍} ∈ Fin ↔ ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹𝑥) ≠ 𝑍))
13 nne 2947 . . . . . . 7 (¬ (𝐹𝑥) ≠ 𝑍 ↔ (𝐹𝑥) = 𝑍)
1413imbi2i 336 . . . . . 6 ((𝑚 < 𝑥 → ¬ (𝐹𝑥) ≠ 𝑍) ↔ (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍))
1514ralbii 3092 . . . . 5 (∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹𝑥) ≠ 𝑍) ↔ ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍))
1615rexbii 3181 . . . 4 (∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹𝑥) ≠ 𝑍) ↔ ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍))
1712, 16sylbb 218 . . 3 ({𝑥 ∈ ℕ0 ∣ (𝐹𝑥) ≠ 𝑍} ∈ Fin → ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍))
1811, 17syl6bi 252 . 2 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → ((𝐹 supp 𝑍) ∈ Fin → ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍)))
193, 18syld 47 1 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432   class class class wbr 5074   Fn wfn 6428  cfv 6433  (class class class)co 7275   supp csupp 7977  m cmap 8615  Fincfn 8733   finSupp cfsupp 9128   < clt 11009  0cn0 12233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  fsuppmapnn0fz  13716  nn0gsumfz  19585  mptcoe1fsupp  21386  coe1ae0  21387  gsummoncoe1  21475  mptcoe1matfsupp  21951  mp2pm2mplem4  21958  pm2mp  21974  cayhamlem4  22037
  Copyright terms: Public domain W3C validator