![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppmapnn0ub | Structured version Visualization version GIF version |
Description: If a function over the nonnegative integers is finitely supported, then there is an upper bound for the arguments resulting in nonzero values. (Contributed by AV, 6-Oct-2019.) |
Ref | Expression |
---|---|
fsuppmapnn0ub | ⊢ ((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 471 | . . . 4 ⊢ (((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) ∧ 𝐹 finSupp 𝑍) → 𝐹 finSupp 𝑍) | |
2 | 1 | fsuppimpd 8438 | . . 3 ⊢ (((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) ∧ 𝐹 finSupp 𝑍) → (𝐹 supp 𝑍) ∈ Fin) |
3 | 2 | ex 397 | . 2 ⊢ ((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin)) |
4 | elmapfn 8032 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 ↑𝑚 ℕ0) → 𝐹 Fn ℕ0) | |
5 | 4 | adantr 466 | . . . . 5 ⊢ ((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) → 𝐹 Fn ℕ0) |
6 | nn0ex 11500 | . . . . . 6 ⊢ ℕ0 ∈ V | |
7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) → ℕ0 ∈ V) |
8 | simpr 471 | . . . . 5 ⊢ ((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) → 𝑍 ∈ 𝑉) | |
9 | suppvalfn 7453 | . . . . 5 ⊢ ((𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝐹‘𝑥) ≠ 𝑍}) | |
10 | 5, 7, 8, 9 | syl3anc 1476 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝐹‘𝑥) ≠ 𝑍}) |
11 | 10 | eleq1d 2835 | . . 3 ⊢ ((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) ∈ Fin ↔ {𝑥 ∈ ℕ0 ∣ (𝐹‘𝑥) ≠ 𝑍} ∈ Fin)) |
12 | rabssnn0fi 12993 | . . . 4 ⊢ ({𝑥 ∈ ℕ0 ∣ (𝐹‘𝑥) ≠ 𝑍} ∈ Fin ↔ ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹‘𝑥) ≠ 𝑍)) | |
13 | nne 2947 | . . . . . . 7 ⊢ (¬ (𝐹‘𝑥) ≠ 𝑍 ↔ (𝐹‘𝑥) = 𝑍) | |
14 | 13 | imbi2i 325 | . . . . . 6 ⊢ ((𝑚 < 𝑥 → ¬ (𝐹‘𝑥) ≠ 𝑍) ↔ (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) |
15 | 14 | ralbii 3129 | . . . . 5 ⊢ (∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹‘𝑥) ≠ 𝑍) ↔ ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) |
16 | 15 | rexbii 3189 | . . . 4 ⊢ (∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹‘𝑥) ≠ 𝑍) ↔ ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) |
17 | 12, 16 | sylbb 209 | . . 3 ⊢ ({𝑥 ∈ ℕ0 ∣ (𝐹‘𝑥) ≠ 𝑍} ∈ Fin → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) |
18 | 11, 17 | syl6bi 243 | . 2 ⊢ ((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) ∈ Fin → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍))) |
19 | 3, 18 | syld 47 | 1 ⊢ ((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 ∃wrex 3062 {crab 3065 Vcvv 3351 class class class wbr 4786 Fn wfn 6026 ‘cfv 6031 (class class class)co 6793 supp csupp 7446 ↑𝑚 cmap 8009 Fincfn 8109 finSupp cfsupp 8431 < clt 10276 ℕ0cn0 11494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 |
This theorem is referenced by: fsuppmapnn0fz 13003 nn0gsumfz 18587 mptcoe1fsupp 19800 coe1ae0 19801 gsummoncoe1 19889 mptcoe1matfsupp 20827 mp2pm2mplem4 20834 pm2mp 20850 cayhamlem4 20913 |
Copyright terms: Public domain | W3C validator |