Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsuppmapnn0ub | Structured version Visualization version GIF version |
Description: If a function over the nonnegative integers is finitely supported, then there is an upper bound for the arguments resulting in nonzero values. (Contributed by AV, 6-Oct-2019.) |
Ref | Expression |
---|---|
fsuppmapnn0ub | ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ (((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) ∧ 𝐹 finSupp 𝑍) → 𝐹 finSupp 𝑍) | |
2 | 1 | fsuppimpd 9065 | . . 3 ⊢ (((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) ∧ 𝐹 finSupp 𝑍) → (𝐹 supp 𝑍) ∈ Fin) |
3 | 2 | ex 412 | . 2 ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin)) |
4 | elmapfn 8611 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 ↑m ℕ0) → 𝐹 Fn ℕ0) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → 𝐹 Fn ℕ0) |
6 | nn0ex 12169 | . . . . . 6 ⊢ ℕ0 ∈ V | |
7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → ℕ0 ∈ V) |
8 | simpr 484 | . . . . 5 ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → 𝑍 ∈ 𝑉) | |
9 | suppvalfn 7956 | . . . . 5 ⊢ ((𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝐹‘𝑥) ≠ 𝑍}) | |
10 | 5, 7, 8, 9 | syl3anc 1369 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝐹‘𝑥) ≠ 𝑍}) |
11 | 10 | eleq1d 2823 | . . 3 ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) ∈ Fin ↔ {𝑥 ∈ ℕ0 ∣ (𝐹‘𝑥) ≠ 𝑍} ∈ Fin)) |
12 | rabssnn0fi 13634 | . . . 4 ⊢ ({𝑥 ∈ ℕ0 ∣ (𝐹‘𝑥) ≠ 𝑍} ∈ Fin ↔ ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹‘𝑥) ≠ 𝑍)) | |
13 | nne 2946 | . . . . . . 7 ⊢ (¬ (𝐹‘𝑥) ≠ 𝑍 ↔ (𝐹‘𝑥) = 𝑍) | |
14 | 13 | imbi2i 335 | . . . . . 6 ⊢ ((𝑚 < 𝑥 → ¬ (𝐹‘𝑥) ≠ 𝑍) ↔ (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) |
15 | 14 | ralbii 3090 | . . . . 5 ⊢ (∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹‘𝑥) ≠ 𝑍) ↔ ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) |
16 | 15 | rexbii 3177 | . . . 4 ⊢ (∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹‘𝑥) ≠ 𝑍) ↔ ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) |
17 | 12, 16 | sylbb 218 | . . 3 ⊢ ({𝑥 ∈ ℕ0 ∣ (𝐹‘𝑥) ≠ 𝑍} ∈ Fin → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) |
18 | 11, 17 | syl6bi 252 | . 2 ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) ∈ Fin → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍))) |
19 | 3, 18 | syld 47 | 1 ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 Vcvv 3422 class class class wbr 5070 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 ↑m cmap 8573 Fincfn 8691 finSupp cfsupp 9058 < clt 10940 ℕ0cn0 12163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 |
This theorem is referenced by: fsuppmapnn0fz 13644 nn0gsumfz 19500 mptcoe1fsupp 21296 coe1ae0 21297 gsummoncoe1 21385 mptcoe1matfsupp 21859 mp2pm2mplem4 21866 pm2mp 21882 cayhamlem4 21945 |
Copyright terms: Public domain | W3C validator |