![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fz1f1o | Structured version Visualization version GIF version |
Description: A lemma for working with finite sums. (Contributed by Mario Carneiro, 22-Apr-2014.) |
Ref | Expression |
---|---|
fz1f1o | ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl 14339 | . . . 4 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
2 | elnn0 12496 | . . . 4 ⊢ ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) |
4 | 3 | orcomd 870 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ∨ (♯‘𝐴) ∈ ℕ)) |
5 | hasheq0 14346 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | |
6 | isfinite4 14345 | . . . . 5 ⊢ (𝐴 ∈ Fin ↔ (1...(♯‘𝐴)) ≈ 𝐴) | |
7 | bren 8965 | . . . . 5 ⊢ ((1...(♯‘𝐴)) ≈ 𝐴 ↔ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) | |
8 | 6, 7 | sylbb 218 | . . . 4 ⊢ (𝐴 ∈ Fin → ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) |
9 | 8 | biantrud 531 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
10 | 5, 9 | orbi12d 917 | . 2 ⊢ (𝐴 ∈ Fin → (((♯‘𝐴) = 0 ∨ (♯‘𝐴) ∈ ℕ) ↔ (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)))) |
11 | 4, 10 | mpbid 231 | 1 ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∅c0 4318 class class class wbr 5142 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 ≈ cen 8952 Fincfn 8955 0cc0 11130 1c1 11131 ℕcn 12234 ℕ0cn0 12494 ...cfz 13508 ♯chash 14313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-n0 12495 df-z 12581 df-uz 12845 df-fz 13509 df-hash 14314 |
This theorem is referenced by: sumz 15692 fsumf1o 15693 fsumss 15695 fsumcl2lem 15701 fsumadd 15710 fsummulc2 15754 fsumconst 15760 fsumrelem 15777 prod1 15912 fprodf1o 15914 fprodss 15916 fprodcl2lem 15918 fprodmul 15928 fproddiv 15929 fprodconst 15946 fprodn0 15947 gsumval3eu 19850 gsumzres 19855 gsumzcl2 19856 gsumzf1o 19858 gsumzaddlem 19867 gsumconst 19880 gsumzmhm 19883 gsumzoppg 19890 gsumfsum 21354 f1ocnt 32554 stoweidlem35 45346 stoweidlem39 45350 |
Copyright terms: Public domain | W3C validator |