MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldms Structured version   Visualization version   GIF version

Theorem cnfldms 23984
Description: The complex number field is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Assertion
Ref Expression
cnfldms fld ∈ MetSp

Proof of Theorem cnfldms
StepHypRef Expression
1 cnmet 23980 . 2 (abs ∘ − ) ∈ (Met‘ℂ)
2 eqid 2736 . 2 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
3 cnxmet 23981 . . . 4 (abs ∘ − ) ∈ (∞Met‘ℂ)
42mopntopon 23637 . . . 4 ((abs ∘ − ) ∈ (∞Met‘ℂ) → (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ))
5 cnfldbas 20646 . . . . 5 ℂ = (Base‘ℂfld)
6 cnfldtset 20650 . . . . 5 (MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld)
75, 6topontopn 22134 . . . 4 ((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) → (MetOpen‘(abs ∘ − )) = (TopOpen‘ℂfld))
83, 4, 7mp2b 10 . . 3 (MetOpen‘(abs ∘ − )) = (TopOpen‘ℂfld)
9 absf 15094 . . . . . 6 abs:ℂ⟶ℝ
10 subf 11269 . . . . . 6 − :(ℂ × ℂ)⟶ℂ
11 fco 6654 . . . . . 6 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
129, 10, 11mp2an 690 . . . . 5 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
13 ffn 6630 . . . . 5 ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ))
14 fnresdm 6582 . . . . 5 ((abs ∘ − ) Fn (ℂ × ℂ) → ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − ))
1512, 13, 14mp2b 10 . . . 4 ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − )
16 cnfldds 20652 . . . . 5 (abs ∘ − ) = (dist‘ℂfld)
1716reseq1i 5899 . . . 4 ((abs ∘ − ) ↾ (ℂ × ℂ)) = ((dist‘ℂfld) ↾ (ℂ × ℂ))
1815, 17eqtr3i 2766 . . 3 (abs ∘ − ) = ((dist‘ℂfld) ↾ (ℂ × ℂ))
198, 5, 18isms2 23648 . 2 (ℂfld ∈ MetSp ↔ ((abs ∘ − ) ∈ (Met‘ℂ) ∧ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))))
201, 2, 19mpbir2an 709 1 fld ∈ MetSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104   × cxp 5598  cres 5602  ccom 5604   Fn wfn 6453  wf 6454  cfv 6458  cc 10915  cr 10916  cmin 11251  abscabs 14990  distcds 17016  TopOpenctopn 17177  ∞Metcxmet 20627  Metcmet 20628  MetOpencmopn 20632  fldccnfld 20642  TopOnctopon 22104  MetSpcms 23516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9245  df-inf 9246  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-z 12366  df-dec 12484  df-uz 12629  df-q 12735  df-rp 12777  df-xneg 12894  df-xadd 12895  df-xmul 12896  df-fz 13286  df-seq 13768  df-exp 13829  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-struct 16893  df-slot 16928  df-ndx 16940  df-base 16958  df-plusg 17020  df-mulr 17021  df-starv 17022  df-tset 17026  df-ple 17027  df-ds 17029  df-unif 17030  df-rest 17178  df-topn 17179  df-topgen 17199  df-psmet 20634  df-xmet 20635  df-met 20636  df-bl 20637  df-mopn 20638  df-cnfld 20643  df-top 22088  df-topon 22105  df-topsp 22127  df-bases 22141  df-xms 23518  df-ms 23519
This theorem is referenced by:  cnfldxms  23985  cnfldtps  23986  cnngp  23988  cncms  24564  cnpwstotbnd  35999
  Copyright terms: Public domain W3C validator