![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldms | Structured version Visualization version GIF version |
Description: The complex number field is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
cnfldms | ⊢ ℂfld ∈ MetSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmet 24608 | . 2 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
2 | eqid 2731 | . 2 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
3 | cnxmet 24609 | . . . 4 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
4 | 2 | mopntopon 24265 | . . . 4 ⊢ ((abs ∘ − ) ∈ (∞Met‘ℂ) → (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)) |
5 | cnfldbas 21237 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
6 | cnfldtset 21241 | . . . . 5 ⊢ (MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld) | |
7 | 5, 6 | topontopn 22762 | . . . 4 ⊢ ((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) → (MetOpen‘(abs ∘ − )) = (TopOpen‘ℂfld)) |
8 | 3, 4, 7 | mp2b 10 | . . 3 ⊢ (MetOpen‘(abs ∘ − )) = (TopOpen‘ℂfld) |
9 | absf 15291 | . . . . . 6 ⊢ abs:ℂ⟶ℝ | |
10 | subf 11469 | . . . . . 6 ⊢ − :(ℂ × ℂ)⟶ℂ | |
11 | fco 6741 | . . . . . 6 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
12 | 9, 10, 11 | mp2an 689 | . . . . 5 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
13 | ffn 6717 | . . . . 5 ⊢ ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ)) | |
14 | fnresdm 6669 | . . . . 5 ⊢ ((abs ∘ − ) Fn (ℂ × ℂ) → ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − )) | |
15 | 12, 13, 14 | mp2b 10 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − ) |
16 | cnfldds 21243 | . . . . 5 ⊢ (abs ∘ − ) = (dist‘ℂfld) | |
17 | 16 | reseq1i 5977 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
18 | 15, 17 | eqtr3i 2761 | . . 3 ⊢ (abs ∘ − ) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
19 | 8, 5, 18 | isms2 24276 | . 2 ⊢ (ℂfld ∈ MetSp ↔ ((abs ∘ − ) ∈ (Met‘ℂ) ∧ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )))) |
20 | 1, 2, 19 | mpbir2an 708 | 1 ⊢ ℂfld ∈ MetSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 × cxp 5674 ↾ cres 5678 ∘ ccom 5680 Fn wfn 6538 ⟶wf 6539 ‘cfv 6543 ℂcc 11114 ℝcr 11115 − cmin 11451 abscabs 15188 distcds 17213 TopOpenctopn 17374 ∞Metcxmet 21218 Metcmet 21219 MetOpencmopn 21223 ℂfldccnfld 21233 TopOnctopon 22732 MetSpcms 24144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-fz 13492 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-struct 17087 df-slot 17122 df-ndx 17134 df-base 17152 df-plusg 17217 df-mulr 17218 df-starv 17219 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-rest 17375 df-topn 17376 df-topgen 17396 df-psmet 21225 df-xmet 21226 df-met 21227 df-bl 21228 df-mopn 21229 df-cnfld 21234 df-top 22716 df-topon 22733 df-topsp 22755 df-bases 22769 df-xms 24146 df-ms 24147 |
This theorem is referenced by: cnfldxms 24613 cnfldtps 24614 cnngp 24616 cncms 25203 cnpwstotbnd 37129 |
Copyright terms: Public domain | W3C validator |