MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfil1 Structured version   Visualization version   GIF version

Theorem trfil1 22422
Description: Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by FL, 2-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
trfil1 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐴 = (𝐿t 𝐴))

Proof of Theorem trfil1
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐴𝑌)
2 sseqin2 4189 . . . . 5 (𝐴𝑌 ↔ (𝑌𝐴) = 𝐴)
31, 2sylib 219 . . . 4 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (𝑌𝐴) = 𝐴)
4 simpl 483 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐿 ∈ (Fil‘𝑌))
5 id 22 . . . . . 6 (𝐴𝑌𝐴𝑌)
6 filtop 22391 . . . . . 6 (𝐿 ∈ (Fil‘𝑌) → 𝑌𝐿)
7 ssexg 5218 . . . . . 6 ((𝐴𝑌𝑌𝐿) → 𝐴 ∈ V)
85, 6, 7syl2anr 596 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐴 ∈ V)
96adantr 481 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝑌𝐿)
10 elrestr 16690 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ∈ V ∧ 𝑌𝐿) → (𝑌𝐴) ∈ (𝐿t 𝐴))
114, 8, 9, 10syl3anc 1363 . . . 4 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (𝑌𝐴) ∈ (𝐿t 𝐴))
123, 11eqeltrrd 2911 . . 3 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐴 ∈ (𝐿t 𝐴))
13 elssuni 4859 . . 3 (𝐴 ∈ (𝐿t 𝐴) → 𝐴 (𝐿t 𝐴))
1412, 13syl 17 . 2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐴 (𝐿t 𝐴))
15 restsspw 16693 . . . 4 (𝐿t 𝐴) ⊆ 𝒫 𝐴
16 sspwuni 5013 . . . 4 ((𝐿t 𝐴) ⊆ 𝒫 𝐴 (𝐿t 𝐴) ⊆ 𝐴)
1715, 16mpbi 231 . . 3 (𝐿t 𝐴) ⊆ 𝐴
1817a1i 11 . 2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (𝐿t 𝐴) ⊆ 𝐴)
1914, 18eqssd 3981 1 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐴 = (𝐿t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  cin 3932  wss 3933  𝒫 cpw 4535   cuni 4830  cfv 6348  (class class class)co 7145  t crest 16682  Filcfil 22381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-rest 16684  df-fbas 20470  df-fil 22382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator