Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trfil1 | Structured version Visualization version GIF version |
Description: Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by FL, 2-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
trfil1 | ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 = ∪ (𝐿 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ⊆ 𝑌) | |
2 | sseqin2 4146 | . . . . 5 ⊢ (𝐴 ⊆ 𝑌 ↔ (𝑌 ∩ 𝐴) = 𝐴) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝑌 ∩ 𝐴) = 𝐴) |
4 | simpl 482 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐿 ∈ (Fil‘𝑌)) | |
5 | id 22 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑌 → 𝐴 ⊆ 𝑌) | |
6 | filtop 22914 | . . . . . 6 ⊢ (𝐿 ∈ (Fil‘𝑌) → 𝑌 ∈ 𝐿) | |
7 | ssexg 5242 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ 𝐿) → 𝐴 ∈ V) | |
8 | 5, 6, 7 | syl2anr 596 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
9 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝑌 ∈ 𝐿) |
10 | elrestr 17056 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ∈ V ∧ 𝑌 ∈ 𝐿) → (𝑌 ∩ 𝐴) ∈ (𝐿 ↾t 𝐴)) | |
11 | 4, 8, 9, 10 | syl3anc 1369 | . . . 4 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝑌 ∩ 𝐴) ∈ (𝐿 ↾t 𝐴)) |
12 | 3, 11 | eqeltrrd 2840 | . . 3 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ (𝐿 ↾t 𝐴)) |
13 | elssuni 4868 | . . 3 ⊢ (𝐴 ∈ (𝐿 ↾t 𝐴) → 𝐴 ⊆ ∪ (𝐿 ↾t 𝐴)) | |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ⊆ ∪ (𝐿 ↾t 𝐴)) |
15 | restsspw 17059 | . . . 4 ⊢ (𝐿 ↾t 𝐴) ⊆ 𝒫 𝐴 | |
16 | sspwuni 5025 | . . . 4 ⊢ ((𝐿 ↾t 𝐴) ⊆ 𝒫 𝐴 ↔ ∪ (𝐿 ↾t 𝐴) ⊆ 𝐴) | |
17 | 15, 16 | mpbi 229 | . . 3 ⊢ ∪ (𝐿 ↾t 𝐴) ⊆ 𝐴 |
18 | 17 | a1i 11 | . 2 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ∪ (𝐿 ↾t 𝐴) ⊆ 𝐴) |
19 | 14, 18 | eqssd 3934 | 1 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 = ∪ (𝐿 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ‘cfv 6418 (class class class)co 7255 ↾t crest 17048 Filcfil 22904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-rest 17050 df-fbas 20507 df-fil 22905 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |