Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trfil1 | Structured version Visualization version GIF version |
Description: Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by FL, 2-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
trfil1 | ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 = ∪ (𝐿 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ⊆ 𝑌) | |
2 | sseqin2 4159 | . . . . 5 ⊢ (𝐴 ⊆ 𝑌 ↔ (𝑌 ∩ 𝐴) = 𝐴) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝑌 ∩ 𝐴) = 𝐴) |
4 | simpl 483 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐿 ∈ (Fil‘𝑌)) | |
5 | id 22 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑌 → 𝐴 ⊆ 𝑌) | |
6 | filtop 23086 | . . . . . 6 ⊢ (𝐿 ∈ (Fil‘𝑌) → 𝑌 ∈ 𝐿) | |
7 | ssexg 5261 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ 𝐿) → 𝐴 ∈ V) | |
8 | 5, 6, 7 | syl2anr 597 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
9 | 6 | adantr 481 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝑌 ∈ 𝐿) |
10 | elrestr 17213 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ∈ V ∧ 𝑌 ∈ 𝐿) → (𝑌 ∩ 𝐴) ∈ (𝐿 ↾t 𝐴)) | |
11 | 4, 8, 9, 10 | syl3anc 1370 | . . . 4 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝑌 ∩ 𝐴) ∈ (𝐿 ↾t 𝐴)) |
12 | 3, 11 | eqeltrrd 2838 | . . 3 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ (𝐿 ↾t 𝐴)) |
13 | elssuni 4882 | . . 3 ⊢ (𝐴 ∈ (𝐿 ↾t 𝐴) → 𝐴 ⊆ ∪ (𝐿 ↾t 𝐴)) | |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ⊆ ∪ (𝐿 ↾t 𝐴)) |
15 | restsspw 17216 | . . . 4 ⊢ (𝐿 ↾t 𝐴) ⊆ 𝒫 𝐴 | |
16 | sspwuni 5041 | . . . 4 ⊢ ((𝐿 ↾t 𝐴) ⊆ 𝒫 𝐴 ↔ ∪ (𝐿 ↾t 𝐴) ⊆ 𝐴) | |
17 | 15, 16 | mpbi 229 | . . 3 ⊢ ∪ (𝐿 ↾t 𝐴) ⊆ 𝐴 |
18 | 17 | a1i 11 | . 2 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ∪ (𝐿 ↾t 𝐴) ⊆ 𝐴) |
19 | 14, 18 | eqssd 3947 | 1 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 = ∪ (𝐿 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3440 ∩ cin 3895 ⊆ wss 3896 𝒫 cpw 4544 ∪ cuni 4849 ‘cfv 6465 (class class class)co 7316 ↾t crest 17205 Filcfil 23076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-1st 7877 df-2nd 7878 df-rest 17207 df-fbas 20674 df-fil 23077 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |