| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trfil1 | Structured version Visualization version GIF version | ||
| Description: Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by FL, 2-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| trfil1 | ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 = ∪ (𝐿 ↾t 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ⊆ 𝑌) | |
| 2 | sseqin2 4174 | . . . . 5 ⊢ (𝐴 ⊆ 𝑌 ↔ (𝑌 ∩ 𝐴) = 𝐴) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝑌 ∩ 𝐴) = 𝐴) |
| 4 | simpl 482 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐿 ∈ (Fil‘𝑌)) | |
| 5 | id 22 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑌 → 𝐴 ⊆ 𝑌) | |
| 6 | filtop 23740 | . . . . . 6 ⊢ (𝐿 ∈ (Fil‘𝑌) → 𝑌 ∈ 𝐿) | |
| 7 | ssexg 5262 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ 𝐿) → 𝐴 ∈ V) | |
| 8 | 5, 6, 7 | syl2anr 597 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
| 9 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝑌 ∈ 𝐿) |
| 10 | elrestr 17332 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ∈ V ∧ 𝑌 ∈ 𝐿) → (𝑌 ∩ 𝐴) ∈ (𝐿 ↾t 𝐴)) | |
| 11 | 4, 8, 9, 10 | syl3anc 1373 | . . . 4 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝑌 ∩ 𝐴) ∈ (𝐿 ↾t 𝐴)) |
| 12 | 3, 11 | eqeltrrd 2829 | . . 3 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ (𝐿 ↾t 𝐴)) |
| 13 | elssuni 4888 | . . 3 ⊢ (𝐴 ∈ (𝐿 ↾t 𝐴) → 𝐴 ⊆ ∪ (𝐿 ↾t 𝐴)) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ⊆ ∪ (𝐿 ↾t 𝐴)) |
| 15 | restsspw 17335 | . . . 4 ⊢ (𝐿 ↾t 𝐴) ⊆ 𝒫 𝐴 | |
| 16 | sspwuni 5049 | . . . 4 ⊢ ((𝐿 ↾t 𝐴) ⊆ 𝒫 𝐴 ↔ ∪ (𝐿 ↾t 𝐴) ⊆ 𝐴) | |
| 17 | 15, 16 | mpbi 230 | . . 3 ⊢ ∪ (𝐿 ↾t 𝐴) ⊆ 𝐴 |
| 18 | 17 | a1i 11 | . 2 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ∪ (𝐿 ↾t 𝐴) ⊆ 𝐴) |
| 19 | 14, 18 | eqssd 3953 | 1 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 = ∪ (𝐿 ↾t 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 ⊆ wss 3903 𝒫 cpw 4551 ∪ cuni 4858 ‘cfv 6482 (class class class)co 7349 ↾t crest 17324 Filcfil 23730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-rest 17326 df-fbas 21258 df-fil 23731 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |