![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trfil1 | Structured version Visualization version GIF version |
Description: Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by FL, 2-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
trfil1 | ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 = ∪ (𝐿 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ⊆ 𝑌) | |
2 | sseqin2 4244 | . . . . 5 ⊢ (𝐴 ⊆ 𝑌 ↔ (𝑌 ∩ 𝐴) = 𝐴) | |
3 | 1, 2 | sylib 218 | . . . 4 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝑌 ∩ 𝐴) = 𝐴) |
4 | simpl 482 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐿 ∈ (Fil‘𝑌)) | |
5 | id 22 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑌 → 𝐴 ⊆ 𝑌) | |
6 | filtop 23886 | . . . . . 6 ⊢ (𝐿 ∈ (Fil‘𝑌) → 𝑌 ∈ 𝐿) | |
7 | ssexg 5341 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ 𝐿) → 𝐴 ∈ V) | |
8 | 5, 6, 7 | syl2anr 596 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
9 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝑌 ∈ 𝐿) |
10 | elrestr 17490 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ∈ V ∧ 𝑌 ∈ 𝐿) → (𝑌 ∩ 𝐴) ∈ (𝐿 ↾t 𝐴)) | |
11 | 4, 8, 9, 10 | syl3anc 1371 | . . . 4 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (𝑌 ∩ 𝐴) ∈ (𝐿 ↾t 𝐴)) |
12 | 3, 11 | eqeltrrd 2845 | . . 3 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ (𝐿 ↾t 𝐴)) |
13 | elssuni 4961 | . . 3 ⊢ (𝐴 ∈ (𝐿 ↾t 𝐴) → 𝐴 ⊆ ∪ (𝐿 ↾t 𝐴)) | |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 ⊆ ∪ (𝐿 ↾t 𝐴)) |
15 | restsspw 17493 | . . . 4 ⊢ (𝐿 ↾t 𝐴) ⊆ 𝒫 𝐴 | |
16 | sspwuni 5123 | . . . 4 ⊢ ((𝐿 ↾t 𝐴) ⊆ 𝒫 𝐴 ↔ ∪ (𝐿 ↾t 𝐴) ⊆ 𝐴) | |
17 | 15, 16 | mpbi 230 | . . 3 ⊢ ∪ (𝐿 ↾t 𝐴) ⊆ 𝐴 |
18 | 17 | a1i 11 | . 2 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ∪ (𝐿 ↾t 𝐴) ⊆ 𝐴) |
19 | 14, 18 | eqssd 4026 | 1 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐴 = ∪ (𝐿 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 ‘cfv 6575 (class class class)co 7450 ↾t crest 17482 Filcfil 23876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-1st 8032 df-2nd 8033 df-rest 17484 df-fbas 21386 df-fil 23877 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |