MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfil1 Structured version   Visualization version   GIF version

Theorem trfil1 23919
Description: Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by FL, 2-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
trfil1 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐴 = (𝐿t 𝐴))

Proof of Theorem trfil1
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐴𝑌)
2 sseqin2 4234 . . . . 5 (𝐴𝑌 ↔ (𝑌𝐴) = 𝐴)
31, 2sylib 218 . . . 4 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (𝑌𝐴) = 𝐴)
4 simpl 482 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐿 ∈ (Fil‘𝑌))
5 id 22 . . . . . 6 (𝐴𝑌𝐴𝑌)
6 filtop 23888 . . . . . 6 (𝐿 ∈ (Fil‘𝑌) → 𝑌𝐿)
7 ssexg 5332 . . . . . 6 ((𝐴𝑌𝑌𝐿) → 𝐴 ∈ V)
85, 6, 7syl2anr 597 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐴 ∈ V)
96adantr 480 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝑌𝐿)
10 elrestr 17484 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ∈ V ∧ 𝑌𝐿) → (𝑌𝐴) ∈ (𝐿t 𝐴))
114, 8, 9, 10syl3anc 1372 . . . 4 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (𝑌𝐴) ∈ (𝐿t 𝐴))
123, 11eqeltrrd 2842 . . 3 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐴 ∈ (𝐿t 𝐴))
13 elssuni 4945 . . 3 (𝐴 ∈ (𝐿t 𝐴) → 𝐴 (𝐿t 𝐴))
1412, 13syl 17 . 2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐴 (𝐿t 𝐴))
15 restsspw 17487 . . . 4 (𝐿t 𝐴) ⊆ 𝒫 𝐴
16 sspwuni 5108 . . . 4 ((𝐿t 𝐴) ⊆ 𝒫 𝐴 (𝐿t 𝐴) ⊆ 𝐴)
1715, 16mpbi 230 . . 3 (𝐿t 𝐴) ⊆ 𝐴
1817a1i 11 . 2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (𝐿t 𝐴) ⊆ 𝐴)
1914, 18eqssd 4016 1 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐴 = (𝐿t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3481  cin 3965  wss 3966  𝒫 cpw 4608   cuni 4915  cfv 6569  (class class class)co 7438  t crest 17476  Filcfil 23878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-rest 17478  df-fbas 21388  df-fil 23879
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator