![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uffcfflf | Structured version Visualization version GIF version |
Description: If the domain filter is an ultrafilter, the cluster points of the function are the limit points. (Contributed by Jeff Hankins, 12-Dec-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
Ref | Expression |
---|---|
uffcfflf | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = ((𝐽 fLimf 𝐿)‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponmax 22948 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
2 | fmufil 23983 | . . . 4 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋)) | |
3 | 1, 2 | syl3an1 1162 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋)) |
4 | uffclsflim 24055 | . . 3 ⊢ (((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋) → (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
6 | ufilfil 23928 | . . 3 ⊢ (𝐿 ∈ (UFil‘𝑌) → 𝐿 ∈ (Fil‘𝑌)) | |
7 | fcfval 24057 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿))) | |
8 | 6, 7 | syl3an2 1163 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿))) |
9 | flfval 24014 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) | |
10 | 6, 9 | syl3an2 1163 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
11 | 5, 8, 10 | 3eqtr4d 2785 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = ((𝐽 fLimf 𝐿)‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 TopOnctopon 22932 Filcfil 23869 UFilcufil 23923 FilMap cfm 23957 fLim cflim 23958 fLimf cflf 23959 fClus cfcls 23960 fClusf cfcf 23961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1o 8505 df-2o 8506 df-map 8867 df-en 8985 df-fin 8988 df-fi 9449 df-fbas 21379 df-fg 21380 df-top 22916 df-topon 22933 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-fil 23870 df-ufil 23925 df-fm 23962 df-flim 23963 df-flf 23964 df-fcls 23965 df-fcf 23966 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |