![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uffcfflf | Structured version Visualization version GIF version |
Description: If the domain filter is an ultrafilter, the cluster points of the function are the limit points. (Contributed by Jeff Hankins, 12-Dec-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
Ref | Expression |
---|---|
uffcfflf | β’ ((π½ β (TopOnβπ) β§ πΏ β (UFilβπ) β§ πΉ:πβΆπ) β ((π½ fClusf πΏ)βπΉ) = ((π½ fLimf πΏ)βπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponmax 22848 | . . . 4 β’ (π½ β (TopOnβπ) β π β π½) | |
2 | fmufil 23883 | . . . 4 β’ ((π β π½ β§ πΏ β (UFilβπ) β§ πΉ:πβΆπ) β ((π FilMap πΉ)βπΏ) β (UFilβπ)) | |
3 | 1, 2 | syl3an1 1160 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΏ β (UFilβπ) β§ πΉ:πβΆπ) β ((π FilMap πΉ)βπΏ) β (UFilβπ)) |
4 | uffclsflim 23955 | . . 3 β’ (((π FilMap πΉ)βπΏ) β (UFilβπ) β (π½ fClus ((π FilMap πΉ)βπΏ)) = (π½ fLim ((π FilMap πΉ)βπΏ))) | |
5 | 3, 4 | syl 17 | . 2 β’ ((π½ β (TopOnβπ) β§ πΏ β (UFilβπ) β§ πΉ:πβΆπ) β (π½ fClus ((π FilMap πΉ)βπΏ)) = (π½ fLim ((π FilMap πΉ)βπΏ))) |
6 | ufilfil 23828 | . . 3 β’ (πΏ β (UFilβπ) β πΏ β (Filβπ)) | |
7 | fcfval 23957 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β ((π½ fClusf πΏ)βπΉ) = (π½ fClus ((π FilMap πΉ)βπΏ))) | |
8 | 6, 7 | syl3an2 1161 | . 2 β’ ((π½ β (TopOnβπ) β§ πΏ β (UFilβπ) β§ πΉ:πβΆπ) β ((π½ fClusf πΏ)βπΉ) = (π½ fClus ((π FilMap πΉ)βπΏ))) |
9 | flfval 23914 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β ((π½ fLimf πΏ)βπΉ) = (π½ fLim ((π FilMap πΉ)βπΏ))) | |
10 | 6, 9 | syl3an2 1161 | . 2 β’ ((π½ β (TopOnβπ) β§ πΏ β (UFilβπ) β§ πΉ:πβΆπ) β ((π½ fLimf πΏ)βπΉ) = (π½ fLim ((π FilMap πΉ)βπΏ))) |
11 | 5, 8, 10 | 3eqtr4d 2778 | 1 β’ ((π½ β (TopOnβπ) β§ πΏ β (UFilβπ) β§ πΉ:πβΆπ) β ((π½ fClusf πΏ)βπΉ) = ((π½ fLimf πΏ)βπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 βΆwf 6549 βcfv 6553 (class class class)co 7426 TopOnctopon 22832 Filcfil 23769 UFilcufil 23823 FilMap cfm 23857 fLim cflim 23858 fLimf cflf 23859 fClus cfcls 23860 fClusf cfcf 23861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1o 8493 df-er 8731 df-map 8853 df-en 8971 df-fin 8974 df-fi 9442 df-fbas 21283 df-fg 21284 df-top 22816 df-topon 22833 df-cld 22943 df-ntr 22944 df-cls 22945 df-nei 23022 df-fil 23770 df-ufil 23825 df-fm 23862 df-flim 23863 df-flf 23864 df-fcls 23865 df-fcf 23866 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |