![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uffcfflf | Structured version Visualization version GIF version |
Description: If the domain filter is an ultrafilter, the cluster points of the function are the limit points. (Contributed by Jeff Hankins, 12-Dec-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
Ref | Expression |
---|---|
uffcfflf | β’ ((π½ β (TopOnβπ) β§ πΏ β (UFilβπ) β§ πΉ:πβΆπ) β ((π½ fClusf πΏ)βπΉ) = ((π½ fLimf πΏ)βπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponmax 22783 | . . . 4 β’ (π½ β (TopOnβπ) β π β π½) | |
2 | fmufil 23818 | . . . 4 β’ ((π β π½ β§ πΏ β (UFilβπ) β§ πΉ:πβΆπ) β ((π FilMap πΉ)βπΏ) β (UFilβπ)) | |
3 | 1, 2 | syl3an1 1160 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΏ β (UFilβπ) β§ πΉ:πβΆπ) β ((π FilMap πΉ)βπΏ) β (UFilβπ)) |
4 | uffclsflim 23890 | . . 3 β’ (((π FilMap πΉ)βπΏ) β (UFilβπ) β (π½ fClus ((π FilMap πΉ)βπΏ)) = (π½ fLim ((π FilMap πΉ)βπΏ))) | |
5 | 3, 4 | syl 17 | . 2 β’ ((π½ β (TopOnβπ) β§ πΏ β (UFilβπ) β§ πΉ:πβΆπ) β (π½ fClus ((π FilMap πΉ)βπΏ)) = (π½ fLim ((π FilMap πΉ)βπΏ))) |
6 | ufilfil 23763 | . . 3 β’ (πΏ β (UFilβπ) β πΏ β (Filβπ)) | |
7 | fcfval 23892 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β ((π½ fClusf πΏ)βπΉ) = (π½ fClus ((π FilMap πΉ)βπΏ))) | |
8 | 6, 7 | syl3an2 1161 | . 2 β’ ((π½ β (TopOnβπ) β§ πΏ β (UFilβπ) β§ πΉ:πβΆπ) β ((π½ fClusf πΏ)βπΉ) = (π½ fClus ((π FilMap πΉ)βπΏ))) |
9 | flfval 23849 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β ((π½ fLimf πΏ)βπΉ) = (π½ fLim ((π FilMap πΉ)βπΏ))) | |
10 | 6, 9 | syl3an2 1161 | . 2 β’ ((π½ β (TopOnβπ) β§ πΏ β (UFilβπ) β§ πΉ:πβΆπ) β ((π½ fLimf πΏ)βπΉ) = (π½ fLim ((π FilMap πΉ)βπΏ))) |
11 | 5, 8, 10 | 3eqtr4d 2776 | 1 β’ ((π½ β (TopOnβπ) β§ πΏ β (UFilβπ) β§ πΉ:πβΆπ) β ((π½ fClusf πΏ)βπΉ) = ((π½ fLimf πΏ)βπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 βΆwf 6533 βcfv 6537 (class class class)co 7405 TopOnctopon 22767 Filcfil 23704 UFilcufil 23758 FilMap cfm 23792 fLim cflim 23793 fLimf cflf 23794 fClus cfcls 23795 fClusf cfcf 23796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1o 8467 df-er 8705 df-map 8824 df-en 8942 df-fin 8945 df-fi 9408 df-fbas 21237 df-fg 21238 df-top 22751 df-topon 22768 df-cld 22878 df-ntr 22879 df-cls 22880 df-nei 22957 df-fil 23705 df-ufil 23760 df-fm 23797 df-flim 23798 df-flf 23799 df-fcls 23800 df-fcf 23801 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |