MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffcfflf Structured version   Visualization version   GIF version

Theorem uffcfflf 23942
Description: If the domain filter is an ultrafilter, the cluster points of the function are the limit points. (Contributed by Jeff Hankins, 12-Dec-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
uffcfflf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = ((𝐽 fLimf 𝐿)‘𝐹))

Proof of Theorem uffcfflf
StepHypRef Expression
1 toponmax 22829 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2 fmufil 23862 . . . 4 ((𝑋𝐽𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋))
31, 2syl3an1 1163 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋))
4 uffclsflim 23934 . . 3 (((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋) → (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
53, 4syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
6 ufilfil 23807 . . 3 (𝐿 ∈ (UFil‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
7 fcfval 23936 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
86, 7syl3an2 1164 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
9 flfval 23893 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
106, 9syl3an2 1164 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
115, 8, 103eqtr4d 2774 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = ((𝐽 fLimf 𝐿)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wf 6482  cfv 6486  (class class class)co 7353  TopOnctopon 22813  Filcfil 23748  UFilcufil 23802   FilMap cfm 23836   fLim cflim 23837   fLimf cflf 23838   fClus cfcls 23839   fClusf cfcf 23840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1o 8395  df-2o 8396  df-map 8762  df-en 8880  df-fin 8883  df-fi 9320  df-fbas 21276  df-fg 21277  df-top 22797  df-topon 22814  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-fil 23749  df-ufil 23804  df-fm 23841  df-flim 23842  df-flf 23843  df-fcls 23844  df-fcf 23845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator