| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uffcfflf | Structured version Visualization version GIF version | ||
| Description: If the domain filter is an ultrafilter, the cluster points of the function are the limit points. (Contributed by Jeff Hankins, 12-Dec-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
| Ref | Expression |
|---|---|
| uffcfflf | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = ((𝐽 fLimf 𝐿)‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponmax 22864 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 2 | fmufil 23897 | . . . 4 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋)) | |
| 3 | 1, 2 | syl3an1 1163 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋)) |
| 4 | uffclsflim 23969 | . . 3 ⊢ (((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋) → (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| 6 | ufilfil 23842 | . . 3 ⊢ (𝐿 ∈ (UFil‘𝑌) → 𝐿 ∈ (Fil‘𝑌)) | |
| 7 | fcfval 23971 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿))) | |
| 8 | 6, 7 | syl3an2 1164 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿))) |
| 9 | flfval 23928 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) | |
| 10 | 6, 9 | syl3an2 1164 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| 11 | 5, 8, 10 | 3eqtr4d 2780 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = ((𝐽 fLimf 𝐿)‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 TopOnctopon 22848 Filcfil 23783 UFilcufil 23837 FilMap cfm 23871 fLim cflim 23872 fLimf cflf 23873 fClus cfcls 23874 fClusf cfcf 23875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1o 8480 df-2o 8481 df-map 8842 df-en 8960 df-fin 8963 df-fi 9423 df-fbas 21312 df-fg 21313 df-top 22832 df-topon 22849 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-fil 23784 df-ufil 23839 df-fm 23876 df-flim 23877 df-flf 23878 df-fcls 23879 df-fcf 23880 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |