MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffcfflf Structured version   Visualization version   GIF version

Theorem uffcfflf 22644
Description: If the domain filter is an ultrafilter, the cluster points of the function are the limit points. (Contributed by Jeff Hankins, 12-Dec-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
uffcfflf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = ((𝐽 fLimf 𝐿)‘𝐹))

Proof of Theorem uffcfflf
StepHypRef Expression
1 toponmax 21531 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2 fmufil 22564 . . . 4 ((𝑋𝐽𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋))
31, 2syl3an1 1160 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋))
4 uffclsflim 22636 . . 3 (((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋) → (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
53, 4syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
6 ufilfil 22509 . . 3 (𝐿 ∈ (UFil‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
7 fcfval 22638 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
86, 7syl3an2 1161 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
9 flfval 22595 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
106, 9syl3an2 1161 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
115, 8, 103eqtr4d 2843 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = ((𝐽 fLimf 𝐿)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  wf 6320  cfv 6324  (class class class)co 7135  TopOnctopon 21515  Filcfil 22450  UFilcufil 22504   FilMap cfm 22538   fLim cflim 22539   fLimf cflf 22540   fClus cfcls 22541   fClusf cfcf 22542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-fin 8496  df-fi 8859  df-fbas 20088  df-fg 20089  df-top 21499  df-topon 21516  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-fil 22451  df-ufil 22506  df-fm 22543  df-flim 22544  df-flf 22545  df-fcls 22546  df-fcf 22547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator