| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulmdvlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for ulmdv 26339. (Contributed by Mario Carneiro, 8-May-2015.) |
| Ref | Expression |
|---|---|
| ulmdv.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ulmdv.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| ulmdv.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| ulmdv.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) |
| ulmdv.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
| ulmdv.l | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) |
| ulmdv.u | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) |
| Ref | Expression |
|---|---|
| ulmdvlem2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7379 | . . . . . 6 ⊢ (𝑆 D (𝐹‘𝑘)) ∈ V | |
| 2 | 1 | rgenw 3051 | . . . . 5 ⊢ ∀𝑘 ∈ 𝑍 (𝑆 D (𝐹‘𝑘)) ∈ V |
| 3 | eqid 2731 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) = (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) | |
| 4 | 3 | fnmpt 6621 | . . . . 5 ⊢ (∀𝑘 ∈ 𝑍 (𝑆 D (𝐹‘𝑘)) ∈ V → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍) |
| 5 | 2, 4 | mp1i 13 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍) |
| 6 | ulmdv.u | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) | |
| 7 | ulmf2 26320 | . . . 4 ⊢ (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍 ∧ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑m 𝑋)) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑m 𝑋)) |
| 9 | 8 | fvmptelcdm 7046 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑆 D (𝐹‘𝑘)) ∈ (ℂ ↑m 𝑋)) |
| 10 | elmapi 8773 | . 2 ⊢ ((𝑆 D (𝐹‘𝑘)) ∈ (ℂ ↑m 𝑋) → (𝑆 D (𝐹‘𝑘)):𝑋⟶ℂ) | |
| 11 | fdm 6660 | . 2 ⊢ ((𝑆 D (𝐹‘𝑘)):𝑋⟶ℂ → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) | |
| 12 | 9, 10, 11 | 3syl 18 | 1 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 {cpr 4575 class class class wbr 5089 ↦ cmpt 5170 dom cdm 5614 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℂcc 11004 ℝcr 11005 ℤcz 12468 ℤ≥cuz 12732 ⇝ cli 15391 D cdv 25791 ⇝𝑢culm 26312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-pm 8753 df-neg 11347 df-z 12469 df-uz 12733 df-ulm 26313 |
| This theorem is referenced by: ulmdvlem3 26338 ulmdv 26339 |
| Copyright terms: Public domain | W3C validator |