![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmdvlem2 | Structured version Visualization version GIF version |
Description: Lemma for ulmdv 26294. (Contributed by Mario Carneiro, 8-May-2015.) |
Ref | Expression |
---|---|
ulmdv.z | β’ π = (β€β₯βπ) |
ulmdv.s | β’ (π β π β {β, β}) |
ulmdv.m | β’ (π β π β β€) |
ulmdv.f | β’ (π β πΉ:πβΆ(β βm π)) |
ulmdv.g | β’ (π β πΊ:πβΆβ) |
ulmdv.l | β’ ((π β§ π§ β π) β (π β π β¦ ((πΉβπ)βπ§)) β (πΊβπ§)) |
ulmdv.u | β’ (π β (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») |
Ref | Expression |
---|---|
ulmdvlem2 | β’ ((π β§ π β π) β dom (π D (πΉβπ)) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7438 | . . . . . 6 β’ (π D (πΉβπ)) β V | |
2 | 1 | rgenw 3059 | . . . . 5 β’ βπ β π (π D (πΉβπ)) β V |
3 | eqid 2726 | . . . . . 6 β’ (π β π β¦ (π D (πΉβπ))) = (π β π β¦ (π D (πΉβπ))) | |
4 | 3 | fnmpt 6684 | . . . . 5 β’ (βπ β π (π D (πΉβπ)) β V β (π β π β¦ (π D (πΉβπ))) Fn π) |
5 | 2, 4 | mp1i 13 | . . . 4 β’ (π β (π β π β¦ (π D (πΉβπ))) Fn π) |
6 | ulmdv.u | . . . 4 β’ (π β (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») | |
7 | ulmf2 26275 | . . . 4 β’ (((π β π β¦ (π D (πΉβπ))) Fn π β§ (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») β (π β π β¦ (π D (πΉβπ))):πβΆ(β βm π)) | |
8 | 5, 6, 7 | syl2anc 583 | . . 3 β’ (π β (π β π β¦ (π D (πΉβπ))):πβΆ(β βm π)) |
9 | 8 | fvmptelcdm 7108 | . 2 β’ ((π β§ π β π) β (π D (πΉβπ)) β (β βm π)) |
10 | elmapi 8845 | . 2 β’ ((π D (πΉβπ)) β (β βm π) β (π D (πΉβπ)):πβΆβ) | |
11 | fdm 6720 | . 2 β’ ((π D (πΉβπ)):πβΆβ β dom (π D (πΉβπ)) = π) | |
12 | 9, 10, 11 | 3syl 18 | 1 β’ ((π β§ π β π) β dom (π D (πΉβπ)) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3055 Vcvv 3468 {cpr 4625 class class class wbr 5141 β¦ cmpt 5224 dom cdm 5669 Fn wfn 6532 βΆwf 6533 βcfv 6537 (class class class)co 7405 βm cmap 8822 βcc 11110 βcr 11111 β€cz 12562 β€β₯cuz 12826 β cli 15434 D cdv 25747 βπ’culm 26267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-map 8824 df-pm 8825 df-neg 11451 df-z 12563 df-uz 12827 df-ulm 26268 |
This theorem is referenced by: ulmdvlem3 26293 ulmdv 26294 |
Copyright terms: Public domain | W3C validator |