MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmdvlem2 Structured version   Visualization version   GIF version

Theorem ulmdvlem2 26256
Description: Lemma for ulmdv 26258. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
ulmdv.z 𝑍 = (ℤ𝑀)
ulmdv.s (𝜑𝑆 ∈ {ℝ, ℂ})
ulmdv.m (𝜑𝑀 ∈ ℤ)
ulmdv.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑋))
ulmdv.g (𝜑𝐺:𝑋⟶ℂ)
ulmdv.l ((𝜑𝑧𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
ulmdv.u (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
Assertion
Ref Expression
ulmdvlem2 ((𝜑𝑘𝑍) → dom (𝑆 D (𝐹𝑘)) = 𝑋)
Distinct variable groups:   𝑧,𝑘,𝐹   𝑧,𝐺   𝑧,𝐻   𝑘,𝑀   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧   𝑘,𝑋,𝑧   𝑘,𝑍,𝑧
Allowed substitution hints:   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑧)

Proof of Theorem ulmdvlem2
StepHypRef Expression
1 ovex 7435 . . . . . 6 (𝑆 D (𝐹𝑘)) ∈ V
21rgenw 3057 . . . . 5 𝑘𝑍 (𝑆 D (𝐹𝑘)) ∈ V
3 eqid 2724 . . . . . 6 (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) = (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))
43fnmpt 6681 . . . . 5 (∀𝑘𝑍 (𝑆 D (𝐹𝑘)) ∈ V → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍)
52, 4mp1i 13 . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍)
6 ulmdv.u . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
7 ulmf2 26239 . . . 4 (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍 ∧ (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑m 𝑋))
85, 6, 7syl2anc 583 . . 3 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑m 𝑋))
98fvmptelcdm 7105 . 2 ((𝜑𝑘𝑍) → (𝑆 D (𝐹𝑘)) ∈ (ℂ ↑m 𝑋))
10 elmapi 8840 . 2 ((𝑆 D (𝐹𝑘)) ∈ (ℂ ↑m 𝑋) → (𝑆 D (𝐹𝑘)):𝑋⟶ℂ)
11 fdm 6717 . 2 ((𝑆 D (𝐹𝑘)):𝑋⟶ℂ → dom (𝑆 D (𝐹𝑘)) = 𝑋)
129, 10, 113syl 18 1 ((𝜑𝑘𝑍) → dom (𝑆 D (𝐹𝑘)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3053  Vcvv 3466  {cpr 4623   class class class wbr 5139  cmpt 5222  dom cdm 5667   Fn wfn 6529  wf 6530  cfv 6534  (class class class)co 7402  m cmap 8817  cc 11105  cr 11106  cz 12556  cuz 12820  cli 15426   D cdv 25716  𝑢culm 26231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1st 7969  df-2nd 7970  df-map 8819  df-pm 8820  df-neg 11445  df-z 12557  df-uz 12821  df-ulm 26232
This theorem is referenced by:  ulmdvlem3  26257  ulmdv  26258
  Copyright terms: Public domain W3C validator