![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmdvlem2 | Structured version Visualization version GIF version |
Description: Lemma for ulmdv 25915. (Contributed by Mario Carneiro, 8-May-2015.) |
Ref | Expression |
---|---|
ulmdv.z | β’ π = (β€β₯βπ) |
ulmdv.s | β’ (π β π β {β, β}) |
ulmdv.m | β’ (π β π β β€) |
ulmdv.f | β’ (π β πΉ:πβΆ(β βm π)) |
ulmdv.g | β’ (π β πΊ:πβΆβ) |
ulmdv.l | β’ ((π β§ π§ β π) β (π β π β¦ ((πΉβπ)βπ§)) β (πΊβπ§)) |
ulmdv.u | β’ (π β (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») |
Ref | Expression |
---|---|
ulmdvlem2 | β’ ((π β§ π β π) β dom (π D (πΉβπ)) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7442 | . . . . . 6 β’ (π D (πΉβπ)) β V | |
2 | 1 | rgenw 3066 | . . . . 5 β’ βπ β π (π D (πΉβπ)) β V |
3 | eqid 2733 | . . . . . 6 β’ (π β π β¦ (π D (πΉβπ))) = (π β π β¦ (π D (πΉβπ))) | |
4 | 3 | fnmpt 6691 | . . . . 5 β’ (βπ β π (π D (πΉβπ)) β V β (π β π β¦ (π D (πΉβπ))) Fn π) |
5 | 2, 4 | mp1i 13 | . . . 4 β’ (π β (π β π β¦ (π D (πΉβπ))) Fn π) |
6 | ulmdv.u | . . . 4 β’ (π β (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») | |
7 | ulmf2 25896 | . . . 4 β’ (((π β π β¦ (π D (πΉβπ))) Fn π β§ (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») β (π β π β¦ (π D (πΉβπ))):πβΆ(β βm π)) | |
8 | 5, 6, 7 | syl2anc 585 | . . 3 β’ (π β (π β π β¦ (π D (πΉβπ))):πβΆ(β βm π)) |
9 | 8 | fvmptelcdm 7113 | . 2 β’ ((π β§ π β π) β (π D (πΉβπ)) β (β βm π)) |
10 | elmapi 8843 | . 2 β’ ((π D (πΉβπ)) β (β βm π) β (π D (πΉβπ)):πβΆβ) | |
11 | fdm 6727 | . 2 β’ ((π D (πΉβπ)):πβΆβ β dom (π D (πΉβπ)) = π) | |
12 | 9, 10, 11 | 3syl 18 | 1 β’ ((π β§ π β π) β dom (π D (πΉβπ)) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3062 Vcvv 3475 {cpr 4631 class class class wbr 5149 β¦ cmpt 5232 dom cdm 5677 Fn wfn 6539 βΆwf 6540 βcfv 6544 (class class class)co 7409 βm cmap 8820 βcc 11108 βcr 11109 β€cz 12558 β€β₯cuz 12822 β cli 15428 D cdv 25380 βπ’culm 25888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-map 8822 df-pm 8823 df-neg 11447 df-z 12559 df-uz 12823 df-ulm 25889 |
This theorem is referenced by: ulmdvlem3 25914 ulmdv 25915 |
Copyright terms: Public domain | W3C validator |