| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulmdvlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for ulmdv 26310. (Contributed by Mario Carneiro, 8-May-2015.) |
| Ref | Expression |
|---|---|
| ulmdv.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ulmdv.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| ulmdv.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| ulmdv.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) |
| ulmdv.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
| ulmdv.l | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) |
| ulmdv.u | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) |
| Ref | Expression |
|---|---|
| ulmdvlem2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7382 | . . . . . 6 ⊢ (𝑆 D (𝐹‘𝑘)) ∈ V | |
| 2 | 1 | rgenw 3048 | . . . . 5 ⊢ ∀𝑘 ∈ 𝑍 (𝑆 D (𝐹‘𝑘)) ∈ V |
| 3 | eqid 2729 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) = (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) | |
| 4 | 3 | fnmpt 6622 | . . . . 5 ⊢ (∀𝑘 ∈ 𝑍 (𝑆 D (𝐹‘𝑘)) ∈ V → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍) |
| 5 | 2, 4 | mp1i 13 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍) |
| 6 | ulmdv.u | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) | |
| 7 | ulmf2 26291 | . . . 4 ⊢ (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍 ∧ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑m 𝑋)) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑m 𝑋)) |
| 9 | 8 | fvmptelcdm 7047 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑆 D (𝐹‘𝑘)) ∈ (ℂ ↑m 𝑋)) |
| 10 | elmapi 8776 | . 2 ⊢ ((𝑆 D (𝐹‘𝑘)) ∈ (ℂ ↑m 𝑋) → (𝑆 D (𝐹‘𝑘)):𝑋⟶ℂ) | |
| 11 | fdm 6661 | . 2 ⊢ ((𝑆 D (𝐹‘𝑘)):𝑋⟶ℂ → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) | |
| 12 | 9, 10, 11 | 3syl 18 | 1 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 {cpr 4579 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 ℂcc 11007 ℝcr 11008 ℤcz 12471 ℤ≥cuz 12735 ⇝ cli 15391 D cdv 25762 ⇝𝑢culm 26283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-map 8755 df-pm 8756 df-neg 11350 df-z 12472 df-uz 12736 df-ulm 26284 |
| This theorem is referenced by: ulmdvlem3 26309 ulmdv 26310 |
| Copyright terms: Public domain | W3C validator |