| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulmdvlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for ulmdv 26318. (Contributed by Mario Carneiro, 8-May-2015.) |
| Ref | Expression |
|---|---|
| ulmdv.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ulmdv.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| ulmdv.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| ulmdv.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) |
| ulmdv.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
| ulmdv.l | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) |
| ulmdv.u | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) |
| Ref | Expression |
|---|---|
| ulmdvlem2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7422 | . . . . . 6 ⊢ (𝑆 D (𝐹‘𝑘)) ∈ V | |
| 2 | 1 | rgenw 3049 | . . . . 5 ⊢ ∀𝑘 ∈ 𝑍 (𝑆 D (𝐹‘𝑘)) ∈ V |
| 3 | eqid 2730 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) = (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) | |
| 4 | 3 | fnmpt 6660 | . . . . 5 ⊢ (∀𝑘 ∈ 𝑍 (𝑆 D (𝐹‘𝑘)) ∈ V → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍) |
| 5 | 2, 4 | mp1i 13 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍) |
| 6 | ulmdv.u | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) | |
| 7 | ulmf2 26299 | . . . 4 ⊢ (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍 ∧ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑m 𝑋)) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑m 𝑋)) |
| 9 | 8 | fvmptelcdm 7087 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑆 D (𝐹‘𝑘)) ∈ (ℂ ↑m 𝑋)) |
| 10 | elmapi 8824 | . 2 ⊢ ((𝑆 D (𝐹‘𝑘)) ∈ (ℂ ↑m 𝑋) → (𝑆 D (𝐹‘𝑘)):𝑋⟶ℂ) | |
| 11 | fdm 6699 | . 2 ⊢ ((𝑆 D (𝐹‘𝑘)):𝑋⟶ℂ → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) | |
| 12 | 9, 10, 11 | 3syl 18 | 1 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 {cpr 4593 class class class wbr 5109 ↦ cmpt 5190 dom cdm 5640 Fn wfn 6508 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ↑m cmap 8801 ℂcc 11072 ℝcr 11073 ℤcz 12535 ℤ≥cuz 12799 ⇝ cli 15456 D cdv 25770 ⇝𝑢culm 26291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-map 8803 df-pm 8804 df-neg 11414 df-z 12536 df-uz 12800 df-ulm 26292 |
| This theorem is referenced by: ulmdvlem3 26317 ulmdv 26318 |
| Copyright terms: Public domain | W3C validator |