MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmdvlem2 Structured version   Visualization version   GIF version

Theorem ulmdvlem2 25776
Description: Lemma for ulmdv 25778. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
ulmdv.z 𝑍 = (β„€β‰₯β€˜π‘€)
ulmdv.s (πœ‘ β†’ 𝑆 ∈ {ℝ, β„‚})
ulmdv.m (πœ‘ β†’ 𝑀 ∈ β„€)
ulmdv.f (πœ‘ β†’ 𝐹:π‘βŸΆ(β„‚ ↑m 𝑋))
ulmdv.g (πœ‘ β†’ 𝐺:π‘‹βŸΆβ„‚)
ulmdv.l ((πœ‘ ∧ 𝑧 ∈ 𝑋) β†’ (π‘˜ ∈ 𝑍 ↦ ((πΉβ€˜π‘˜)β€˜π‘§)) ⇝ (πΊβ€˜π‘§))
ulmdv.u (πœ‘ β†’ (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜)))(β‡π‘’β€˜π‘‹)𝐻)
Assertion
Ref Expression
ulmdvlem2 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ dom (𝑆 D (πΉβ€˜π‘˜)) = 𝑋)
Distinct variable groups:   𝑧,π‘˜,𝐹   𝑧,𝐺   𝑧,𝐻   π‘˜,𝑀   πœ‘,π‘˜,𝑧   𝑆,π‘˜,𝑧   π‘˜,𝑋,𝑧   π‘˜,𝑍,𝑧
Allowed substitution hints:   𝐺(π‘˜)   𝐻(π‘˜)   𝑀(𝑧)

Proof of Theorem ulmdvlem2
StepHypRef Expression
1 ovex 7395 . . . . . 6 (𝑆 D (πΉβ€˜π‘˜)) ∈ V
21rgenw 3069 . . . . 5 βˆ€π‘˜ ∈ 𝑍 (𝑆 D (πΉβ€˜π‘˜)) ∈ V
3 eqid 2737 . . . . . 6 (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜))) = (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜)))
43fnmpt 6646 . . . . 5 (βˆ€π‘˜ ∈ 𝑍 (𝑆 D (πΉβ€˜π‘˜)) ∈ V β†’ (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜))) Fn 𝑍)
52, 4mp1i 13 . . . 4 (πœ‘ β†’ (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜))) Fn 𝑍)
6 ulmdv.u . . . 4 (πœ‘ β†’ (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜)))(β‡π‘’β€˜π‘‹)𝐻)
7 ulmf2 25759 . . . 4 (((π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜))) Fn 𝑍 ∧ (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜)))(β‡π‘’β€˜π‘‹)𝐻) β†’ (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜))):π‘βŸΆ(β„‚ ↑m 𝑋))
85, 6, 7syl2anc 585 . . 3 (πœ‘ β†’ (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜))):π‘βŸΆ(β„‚ ↑m 𝑋))
98fvmptelcdm 7066 . 2 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (𝑆 D (πΉβ€˜π‘˜)) ∈ (β„‚ ↑m 𝑋))
10 elmapi 8794 . 2 ((𝑆 D (πΉβ€˜π‘˜)) ∈ (β„‚ ↑m 𝑋) β†’ (𝑆 D (πΉβ€˜π‘˜)):π‘‹βŸΆβ„‚)
11 fdm 6682 . 2 ((𝑆 D (πΉβ€˜π‘˜)):π‘‹βŸΆβ„‚ β†’ dom (𝑆 D (πΉβ€˜π‘˜)) = 𝑋)
129, 10, 113syl 18 1 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ dom (𝑆 D (πΉβ€˜π‘˜)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3065  Vcvv 3448  {cpr 4593   class class class wbr 5110   ↦ cmpt 5193  dom cdm 5638   Fn wfn 6496  βŸΆwf 6497  β€˜cfv 6501  (class class class)co 7362   ↑m cmap 8772  β„‚cc 11056  β„cr 11057  β„€cz 12506  β„€β‰₯cuz 12770   ⇝ cli 15373   D cdv 25243  β‡π‘’culm 25751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927  df-map 8774  df-pm 8775  df-neg 11395  df-z 12507  df-uz 12771  df-ulm 25752
This theorem is referenced by:  ulmdvlem3  25777  ulmdv  25778
  Copyright terms: Public domain W3C validator