![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmdvlem2 | Structured version Visualization version GIF version |
Description: Lemma for ulmdv 24495. (Contributed by Mario Carneiro, 8-May-2015.) |
Ref | Expression |
---|---|
ulmdv.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
ulmdv.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
ulmdv.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
ulmdv.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑋)) |
ulmdv.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
ulmdv.l | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) |
ulmdv.u | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) |
Ref | Expression |
---|---|
ulmdvlem2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6908 | . . . . . . 7 ⊢ (𝑆 D (𝐹‘𝑘)) ∈ V | |
2 | 1 | rgenw 3103 | . . . . . 6 ⊢ ∀𝑘 ∈ 𝑍 (𝑆 D (𝐹‘𝑘)) ∈ V |
3 | eqid 2797 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) = (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) | |
4 | 3 | fnmpt 6229 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝑍 (𝑆 D (𝐹‘𝑘)) ∈ V → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍) |
5 | 2, 4 | mp1i 13 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍) |
6 | ulmdv.u | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) | |
7 | ulmf2 24476 | . . . . 5 ⊢ (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍 ∧ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋)) | |
8 | 5, 6, 7 | syl2anc 580 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋)) |
9 | 3 | fmpt 6604 | . . . 4 ⊢ (∀𝑘 ∈ 𝑍 (𝑆 D (𝐹‘𝑘)) ∈ (ℂ ↑𝑚 𝑋) ↔ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋)) |
10 | 8, 9 | sylibr 226 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝑆 D (𝐹‘𝑘)) ∈ (ℂ ↑𝑚 𝑋)) |
11 | 10 | r19.21bi 3111 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑆 D (𝐹‘𝑘)) ∈ (ℂ ↑𝑚 𝑋)) |
12 | elmapi 8115 | . 2 ⊢ ((𝑆 D (𝐹‘𝑘)) ∈ (ℂ ↑𝑚 𝑋) → (𝑆 D (𝐹‘𝑘)):𝑋⟶ℂ) | |
13 | fdm 6262 | . 2 ⊢ ((𝑆 D (𝐹‘𝑘)):𝑋⟶ℂ → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) | |
14 | 11, 12, 13 | 3syl 18 | 1 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3087 Vcvv 3383 {cpr 4368 class class class wbr 4841 ↦ cmpt 4920 dom cdm 5310 Fn wfn 6094 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 ↑𝑚 cmap 8093 ℂcc 10220 ℝcr 10221 ℤcz 11662 ℤ≥cuz 11926 ⇝ cli 14553 D cdv 23965 ⇝𝑢culm 24468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-1st 7399 df-2nd 7400 df-map 8095 df-pm 8096 df-neg 10557 df-z 11663 df-uz 11927 df-ulm 24469 |
This theorem is referenced by: ulmdvlem3 24494 ulmdv 24495 |
Copyright terms: Public domain | W3C validator |