MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmdvlem2 Structured version   Visualization version   GIF version

Theorem ulmdvlem2 25913
Description: Lemma for ulmdv 25915. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
ulmdv.z 𝑍 = (β„€β‰₯β€˜π‘€)
ulmdv.s (πœ‘ β†’ 𝑆 ∈ {ℝ, β„‚})
ulmdv.m (πœ‘ β†’ 𝑀 ∈ β„€)
ulmdv.f (πœ‘ β†’ 𝐹:π‘βŸΆ(β„‚ ↑m 𝑋))
ulmdv.g (πœ‘ β†’ 𝐺:π‘‹βŸΆβ„‚)
ulmdv.l ((πœ‘ ∧ 𝑧 ∈ 𝑋) β†’ (π‘˜ ∈ 𝑍 ↦ ((πΉβ€˜π‘˜)β€˜π‘§)) ⇝ (πΊβ€˜π‘§))
ulmdv.u (πœ‘ β†’ (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜)))(β‡π‘’β€˜π‘‹)𝐻)
Assertion
Ref Expression
ulmdvlem2 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ dom (𝑆 D (πΉβ€˜π‘˜)) = 𝑋)
Distinct variable groups:   𝑧,π‘˜,𝐹   𝑧,𝐺   𝑧,𝐻   π‘˜,𝑀   πœ‘,π‘˜,𝑧   𝑆,π‘˜,𝑧   π‘˜,𝑋,𝑧   π‘˜,𝑍,𝑧
Allowed substitution hints:   𝐺(π‘˜)   𝐻(π‘˜)   𝑀(𝑧)

Proof of Theorem ulmdvlem2
StepHypRef Expression
1 ovex 7442 . . . . . 6 (𝑆 D (πΉβ€˜π‘˜)) ∈ V
21rgenw 3066 . . . . 5 βˆ€π‘˜ ∈ 𝑍 (𝑆 D (πΉβ€˜π‘˜)) ∈ V
3 eqid 2733 . . . . . 6 (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜))) = (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜)))
43fnmpt 6691 . . . . 5 (βˆ€π‘˜ ∈ 𝑍 (𝑆 D (πΉβ€˜π‘˜)) ∈ V β†’ (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜))) Fn 𝑍)
52, 4mp1i 13 . . . 4 (πœ‘ β†’ (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜))) Fn 𝑍)
6 ulmdv.u . . . 4 (πœ‘ β†’ (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜)))(β‡π‘’β€˜π‘‹)𝐻)
7 ulmf2 25896 . . . 4 (((π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜))) Fn 𝑍 ∧ (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜)))(β‡π‘’β€˜π‘‹)𝐻) β†’ (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜))):π‘βŸΆ(β„‚ ↑m 𝑋))
85, 6, 7syl2anc 585 . . 3 (πœ‘ β†’ (π‘˜ ∈ 𝑍 ↦ (𝑆 D (πΉβ€˜π‘˜))):π‘βŸΆ(β„‚ ↑m 𝑋))
98fvmptelcdm 7113 . 2 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (𝑆 D (πΉβ€˜π‘˜)) ∈ (β„‚ ↑m 𝑋))
10 elmapi 8843 . 2 ((𝑆 D (πΉβ€˜π‘˜)) ∈ (β„‚ ↑m 𝑋) β†’ (𝑆 D (πΉβ€˜π‘˜)):π‘‹βŸΆβ„‚)
11 fdm 6727 . 2 ((𝑆 D (πΉβ€˜π‘˜)):π‘‹βŸΆβ„‚ β†’ dom (𝑆 D (πΉβ€˜π‘˜)) = 𝑋)
129, 10, 113syl 18 1 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ dom (𝑆 D (πΉβ€˜π‘˜)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  Vcvv 3475  {cpr 4631   class class class wbr 5149   ↦ cmpt 5232  dom cdm 5677   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ↑m cmap 8820  β„‚cc 11108  β„cr 11109  β„€cz 12558  β„€β‰₯cuz 12822   ⇝ cli 15428   D cdv 25380  β‡π‘’culm 25888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-map 8822  df-pm 8823  df-neg 11447  df-z 12559  df-uz 12823  df-ulm 25889
This theorem is referenced by:  ulmdvlem3  25914  ulmdv  25915
  Copyright terms: Public domain W3C validator