MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmuni Structured version   Visualization version   GIF version

Theorem ulmuni 26453
Description: A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.)
Assertion
Ref Expression
ulmuni ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐺 = 𝐻)

Proof of Theorem ulmuni
Dummy variables 𝑖 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmcl 26442 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
21adantr 480 . . 3 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐺:𝑆⟶ℂ)
32ffnd 6748 . 2 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐺 Fn 𝑆)
4 ulmcl 26442 . . . 4 (𝐹(⇝𝑢𝑆)𝐻𝐻:𝑆⟶ℂ)
54adantl 481 . . 3 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐻:𝑆⟶ℂ)
65ffnd 6748 . 2 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐻 Fn 𝑆)
7 eqid 2740 . . . . 5 (ℤ𝑛) = (ℤ𝑛)
8 simplr 768 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑛 ∈ ℤ)
9 simpr 484 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
10 simpllr 775 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑥𝑆)
11 fvex 6933 . . . . . . 7 (ℤ𝑛) ∈ V
1211mptex 7260 . . . . . 6 (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ∈ V
1312a1i 11 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ∈ V)
14 fveq2 6920 . . . . . . . . 9 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
1514fveq1d 6922 . . . . . . . 8 (𝑖 = 𝑘 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑘)‘𝑥))
16 eqid 2740 . . . . . . . 8 (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) = (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥))
17 fvex 6933 . . . . . . . 8 ((𝐹𝑘)‘𝑥) ∈ V
1815, 16, 17fvmpt 7029 . . . . . . 7 (𝑘 ∈ (ℤ𝑛) → ((𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥))‘𝑘) = ((𝐹𝑘)‘𝑥))
1918eqcomd 2746 . . . . . 6 (𝑘 ∈ (ℤ𝑛) → ((𝐹𝑘)‘𝑥) = ((𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥))‘𝑘))
2019adantl 481 . . . . 5 ((((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑘)‘𝑥) = ((𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥))‘𝑘))
21 simp-4l 782 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹(⇝𝑢𝑆)𝐺)
227, 8, 9, 10, 13, 20, 21ulmclm 26448 . . . 4 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ⇝ (𝐺𝑥))
23 simp-4r 783 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹(⇝𝑢𝑆)𝐻)
247, 8, 9, 10, 13, 20, 23ulmclm 26448 . . . 4 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ⇝ (𝐻𝑥))
25 climuni 15598 . . . 4 (((𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ⇝ (𝐺𝑥) ∧ (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ⇝ (𝐻𝑥)) → (𝐺𝑥) = (𝐻𝑥))
2622, 24, 25syl2anc 583 . . 3 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (𝐺𝑥) = (𝐻𝑥))
27 ulmf 26443 . . . 4 (𝐹(⇝𝑢𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
2827ad2antrr 725 . . 3 (((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) → ∃𝑛 ∈ ℤ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
2926, 28r19.29a 3168 . 2 (((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) → (𝐺𝑥) = (𝐻𝑥))
303, 6, 29eqfnfvd 7067 1 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐺 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182  cz 12639  cuz 12903  cli 15530  𝑢culm 26437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-ulm 26438
This theorem is referenced by:  ulmdm  26454
  Copyright terms: Public domain W3C validator