MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmuni Structured version   Visualization version   GIF version

Theorem ulmuni 25284
Description: A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.)
Assertion
Ref Expression
ulmuni ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐺 = 𝐻)

Proof of Theorem ulmuni
Dummy variables 𝑖 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmcl 25273 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
21adantr 484 . . 3 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐺:𝑆⟶ℂ)
32ffnd 6546 . 2 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐺 Fn 𝑆)
4 ulmcl 25273 . . . 4 (𝐹(⇝𝑢𝑆)𝐻𝐻:𝑆⟶ℂ)
54adantl 485 . . 3 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐻:𝑆⟶ℂ)
65ffnd 6546 . 2 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐻 Fn 𝑆)
7 eqid 2737 . . . . 5 (ℤ𝑛) = (ℤ𝑛)
8 simplr 769 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑛 ∈ ℤ)
9 simpr 488 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
10 simpllr 776 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑥𝑆)
11 fvex 6730 . . . . . . 7 (ℤ𝑛) ∈ V
1211mptex 7039 . . . . . 6 (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ∈ V
1312a1i 11 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ∈ V)
14 fveq2 6717 . . . . . . . . 9 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
1514fveq1d 6719 . . . . . . . 8 (𝑖 = 𝑘 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑘)‘𝑥))
16 eqid 2737 . . . . . . . 8 (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) = (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥))
17 fvex 6730 . . . . . . . 8 ((𝐹𝑘)‘𝑥) ∈ V
1815, 16, 17fvmpt 6818 . . . . . . 7 (𝑘 ∈ (ℤ𝑛) → ((𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥))‘𝑘) = ((𝐹𝑘)‘𝑥))
1918eqcomd 2743 . . . . . 6 (𝑘 ∈ (ℤ𝑛) → ((𝐹𝑘)‘𝑥) = ((𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥))‘𝑘))
2019adantl 485 . . . . 5 ((((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑘)‘𝑥) = ((𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥))‘𝑘))
21 simp-4l 783 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹(⇝𝑢𝑆)𝐺)
227, 8, 9, 10, 13, 20, 21ulmclm 25279 . . . 4 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ⇝ (𝐺𝑥))
23 simp-4r 784 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹(⇝𝑢𝑆)𝐻)
247, 8, 9, 10, 13, 20, 23ulmclm 25279 . . . 4 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ⇝ (𝐻𝑥))
25 climuni 15113 . . . 4 (((𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ⇝ (𝐺𝑥) ∧ (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ⇝ (𝐻𝑥)) → (𝐺𝑥) = (𝐻𝑥))
2622, 24, 25syl2anc 587 . . 3 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (𝐺𝑥) = (𝐻𝑥))
27 ulmf 25274 . . . 4 (𝐹(⇝𝑢𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
2827ad2antrr 726 . . 3 (((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) → ∃𝑛 ∈ ℤ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
2926, 28r19.29a 3208 . 2 (((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) → (𝐺𝑥) = (𝐻𝑥))
303, 6, 29eqfnfvd 6855 1 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐺 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wrex 3062  Vcvv 3408   class class class wbr 5053  cmpt 5135  wf 6376  cfv 6380  (class class class)co 7213  m cmap 8508  cc 10727  cz 12176  cuz 12438  cli 15045  𝑢culm 25268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-ulm 25269
This theorem is referenced by:  ulmdm  25285
  Copyright terms: Public domain W3C validator