![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmuni | Structured version Visualization version GIF version |
Description: A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.) |
Ref | Expression |
---|---|
ulmuni | ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmcl 26442 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺:𝑆⟶ℂ) |
3 | 2 | ffnd 6748 | . 2 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 Fn 𝑆) |
4 | ulmcl 26442 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐻 → 𝐻:𝑆⟶ℂ) | |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐻:𝑆⟶ℂ) |
6 | 5 | ffnd 6748 | . 2 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐻 Fn 𝑆) |
7 | eqid 2740 | . . . . 5 ⊢ (ℤ≥‘𝑛) = (ℤ≥‘𝑛) | |
8 | simplr 768 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝑛 ∈ ℤ) | |
9 | simpr 484 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) | |
10 | simpllr 775 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝑥 ∈ 𝑆) | |
11 | fvex 6933 | . . . . . . 7 ⊢ (ℤ≥‘𝑛) ∈ V | |
12 | 11 | mptex 7260 | . . . . . 6 ⊢ (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ∈ V |
13 | 12 | a1i 11 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ∈ V) |
14 | fveq2 6920 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → (𝐹‘𝑖) = (𝐹‘𝑘)) | |
15 | 14 | fveq1d 6922 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑘)‘𝑥)) |
16 | eqid 2740 | . . . . . . . 8 ⊢ (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) = (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) | |
17 | fvex 6933 | . . . . . . . 8 ⊢ ((𝐹‘𝑘)‘𝑥) ∈ V | |
18 | 15, 16, 17 | fvmpt 7029 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑛) → ((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥))‘𝑘) = ((𝐹‘𝑘)‘𝑥)) |
19 | 18 | eqcomd 2746 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑛) → ((𝐹‘𝑘)‘𝑥) = ((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥))‘𝑘)) |
20 | 19 | adantl 481 | . . . . 5 ⊢ ((((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑘)‘𝑥) = ((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥))‘𝑘)) |
21 | simp-4l 782 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹(⇝𝑢‘𝑆)𝐺) | |
22 | 7, 8, 9, 10, 13, 20, 21 | ulmclm 26448 | . . . 4 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐺‘𝑥)) |
23 | simp-4r 783 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹(⇝𝑢‘𝑆)𝐻) | |
24 | 7, 8, 9, 10, 13, 20, 23 | ulmclm 26448 | . . . 4 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐻‘𝑥)) |
25 | climuni 15598 | . . . 4 ⊢ (((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐺‘𝑥) ∧ (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐻‘𝑥)) → (𝐺‘𝑥) = (𝐻‘𝑥)) | |
26 | 22, 24, 25 | syl2anc 583 | . . 3 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → (𝐺‘𝑥) = (𝐻‘𝑥)) |
27 | ulmf 26443 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) | |
28 | 27 | ad2antrr 725 | . . 3 ⊢ (((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) → ∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) |
29 | 26, 28 | r19.29a 3168 | . 2 ⊢ (((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑥) = (𝐻‘𝑥)) |
30 | 3, 6, 29 | eqfnfvd 7067 | 1 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 class class class wbr 5166 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 ℂcc 11182 ℤcz 12639 ℤ≥cuz 12903 ⇝ cli 15530 ⇝𝑢culm 26437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-ulm 26438 |
This theorem is referenced by: ulmdm 26454 |
Copyright terms: Public domain | W3C validator |