| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulmuni | Structured version Visualization version GIF version | ||
| Description: A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.) |
| Ref | Expression |
|---|---|
| ulmuni | ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 = 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmcl 26318 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺:𝑆⟶ℂ) |
| 3 | 2 | ffnd 6657 | . 2 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 Fn 𝑆) |
| 4 | ulmcl 26318 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐻 → 𝐻:𝑆⟶ℂ) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐻:𝑆⟶ℂ) |
| 6 | 5 | ffnd 6657 | . 2 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐻 Fn 𝑆) |
| 7 | eqid 2733 | . . . . 5 ⊢ (ℤ≥‘𝑛) = (ℤ≥‘𝑛) | |
| 8 | simplr 768 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝑛 ∈ ℤ) | |
| 9 | simpr 484 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) | |
| 10 | simpllr 775 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝑥 ∈ 𝑆) | |
| 11 | fvex 6841 | . . . . . . 7 ⊢ (ℤ≥‘𝑛) ∈ V | |
| 12 | 11 | mptex 7163 | . . . . . 6 ⊢ (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ∈ V |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ∈ V) |
| 14 | fveq2 6828 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → (𝐹‘𝑖) = (𝐹‘𝑘)) | |
| 15 | 14 | fveq1d 6830 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑘)‘𝑥)) |
| 16 | eqid 2733 | . . . . . . . 8 ⊢ (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) = (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) | |
| 17 | fvex 6841 | . . . . . . . 8 ⊢ ((𝐹‘𝑘)‘𝑥) ∈ V | |
| 18 | 15, 16, 17 | fvmpt 6935 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑛) → ((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥))‘𝑘) = ((𝐹‘𝑘)‘𝑥)) |
| 19 | 18 | eqcomd 2739 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑛) → ((𝐹‘𝑘)‘𝑥) = ((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥))‘𝑘)) |
| 20 | 19 | adantl 481 | . . . . 5 ⊢ ((((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑘)‘𝑥) = ((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥))‘𝑘)) |
| 21 | simp-4l 782 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹(⇝𝑢‘𝑆)𝐺) | |
| 22 | 7, 8, 9, 10, 13, 20, 21 | ulmclm 26324 | . . . 4 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐺‘𝑥)) |
| 23 | simp-4r 783 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹(⇝𝑢‘𝑆)𝐻) | |
| 24 | 7, 8, 9, 10, 13, 20, 23 | ulmclm 26324 | . . . 4 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐻‘𝑥)) |
| 25 | climuni 15461 | . . . 4 ⊢ (((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐺‘𝑥) ∧ (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐻‘𝑥)) → (𝐺‘𝑥) = (𝐻‘𝑥)) | |
| 26 | 22, 24, 25 | syl2anc 584 | . . 3 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → (𝐺‘𝑥) = (𝐻‘𝑥)) |
| 27 | ulmf 26319 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) | |
| 28 | 27 | ad2antrr 726 | . . 3 ⊢ (((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) → ∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) |
| 29 | 26, 28 | r19.29a 3141 | . 2 ⊢ (((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑥) = (𝐻‘𝑥)) |
| 30 | 3, 6, 29 | eqfnfvd 6973 | 1 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 = 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 class class class wbr 5093 ↦ cmpt 5174 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 ℂcc 11011 ℤcz 12475 ℤ≥cuz 12738 ⇝ cli 15393 ⇝𝑢culm 26313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-ulm 26314 |
| This theorem is referenced by: ulmdm 26330 |
| Copyright terms: Public domain | W3C validator |