MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmuni Structured version   Visualization version   GIF version

Theorem ulmuni 26450
Description: A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.)
Assertion
Ref Expression
ulmuni ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐺 = 𝐻)

Proof of Theorem ulmuni
Dummy variables 𝑖 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmcl 26439 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
21adantr 480 . . 3 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐺:𝑆⟶ℂ)
32ffnd 6738 . 2 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐺 Fn 𝑆)
4 ulmcl 26439 . . . 4 (𝐹(⇝𝑢𝑆)𝐻𝐻:𝑆⟶ℂ)
54adantl 481 . . 3 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐻:𝑆⟶ℂ)
65ffnd 6738 . 2 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐻 Fn 𝑆)
7 eqid 2735 . . . . 5 (ℤ𝑛) = (ℤ𝑛)
8 simplr 769 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑛 ∈ ℤ)
9 simpr 484 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
10 simpllr 776 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑥𝑆)
11 fvex 6920 . . . . . . 7 (ℤ𝑛) ∈ V
1211mptex 7243 . . . . . 6 (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ∈ V
1312a1i 11 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ∈ V)
14 fveq2 6907 . . . . . . . . 9 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
1514fveq1d 6909 . . . . . . . 8 (𝑖 = 𝑘 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑘)‘𝑥))
16 eqid 2735 . . . . . . . 8 (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) = (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥))
17 fvex 6920 . . . . . . . 8 ((𝐹𝑘)‘𝑥) ∈ V
1815, 16, 17fvmpt 7016 . . . . . . 7 (𝑘 ∈ (ℤ𝑛) → ((𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥))‘𝑘) = ((𝐹𝑘)‘𝑥))
1918eqcomd 2741 . . . . . 6 (𝑘 ∈ (ℤ𝑛) → ((𝐹𝑘)‘𝑥) = ((𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥))‘𝑘))
2019adantl 481 . . . . 5 ((((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑘)‘𝑥) = ((𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥))‘𝑘))
21 simp-4l 783 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹(⇝𝑢𝑆)𝐺)
227, 8, 9, 10, 13, 20, 21ulmclm 26445 . . . 4 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ⇝ (𝐺𝑥))
23 simp-4r 784 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹(⇝𝑢𝑆)𝐻)
247, 8, 9, 10, 13, 20, 23ulmclm 26445 . . . 4 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ⇝ (𝐻𝑥))
25 climuni 15585 . . . 4 (((𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ⇝ (𝐺𝑥) ∧ (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ⇝ (𝐻𝑥)) → (𝐺𝑥) = (𝐻𝑥))
2622, 24, 25syl2anc 584 . . 3 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (𝐺𝑥) = (𝐻𝑥))
27 ulmf 26440 . . . 4 (𝐹(⇝𝑢𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
2827ad2antrr 726 . . 3 (((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) → ∃𝑛 ∈ ℤ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
2926, 28r19.29a 3160 . 2 (((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) → (𝐺𝑥) = (𝐻𝑥))
303, 6, 29eqfnfvd 7054 1 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐺 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  Vcvv 3478   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  cc 11151  cz 12611  cuz 12876  cli 15517  𝑢culm 26434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-ulm 26435
This theorem is referenced by:  ulmdm  26451
  Copyright terms: Public domain W3C validator