Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ulmuni | Structured version Visualization version GIF version |
Description: A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.) |
Ref | Expression |
---|---|
ulmuni | ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmcl 25273 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | |
2 | 1 | adantr 484 | . . 3 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺:𝑆⟶ℂ) |
3 | 2 | ffnd 6546 | . 2 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 Fn 𝑆) |
4 | ulmcl 25273 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐻 → 𝐻:𝑆⟶ℂ) | |
5 | 4 | adantl 485 | . . 3 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐻:𝑆⟶ℂ) |
6 | 5 | ffnd 6546 | . 2 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐻 Fn 𝑆) |
7 | eqid 2737 | . . . . 5 ⊢ (ℤ≥‘𝑛) = (ℤ≥‘𝑛) | |
8 | simplr 769 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝑛 ∈ ℤ) | |
9 | simpr 488 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) | |
10 | simpllr 776 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝑥 ∈ 𝑆) | |
11 | fvex 6730 | . . . . . . 7 ⊢ (ℤ≥‘𝑛) ∈ V | |
12 | 11 | mptex 7039 | . . . . . 6 ⊢ (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ∈ V |
13 | 12 | a1i 11 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ∈ V) |
14 | fveq2 6717 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → (𝐹‘𝑖) = (𝐹‘𝑘)) | |
15 | 14 | fveq1d 6719 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑘)‘𝑥)) |
16 | eqid 2737 | . . . . . . . 8 ⊢ (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) = (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) | |
17 | fvex 6730 | . . . . . . . 8 ⊢ ((𝐹‘𝑘)‘𝑥) ∈ V | |
18 | 15, 16, 17 | fvmpt 6818 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑛) → ((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥))‘𝑘) = ((𝐹‘𝑘)‘𝑥)) |
19 | 18 | eqcomd 2743 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑛) → ((𝐹‘𝑘)‘𝑥) = ((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥))‘𝑘)) |
20 | 19 | adantl 485 | . . . . 5 ⊢ ((((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑘)‘𝑥) = ((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥))‘𝑘)) |
21 | simp-4l 783 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹(⇝𝑢‘𝑆)𝐺) | |
22 | 7, 8, 9, 10, 13, 20, 21 | ulmclm 25279 | . . . 4 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐺‘𝑥)) |
23 | simp-4r 784 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹(⇝𝑢‘𝑆)𝐻) | |
24 | 7, 8, 9, 10, 13, 20, 23 | ulmclm 25279 | . . . 4 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐻‘𝑥)) |
25 | climuni 15113 | . . . 4 ⊢ (((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐺‘𝑥) ∧ (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐻‘𝑥)) → (𝐺‘𝑥) = (𝐻‘𝑥)) | |
26 | 22, 24, 25 | syl2anc 587 | . . 3 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → (𝐺‘𝑥) = (𝐻‘𝑥)) |
27 | ulmf 25274 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) | |
28 | 27 | ad2antrr 726 | . . 3 ⊢ (((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) → ∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) |
29 | 26, 28 | r19.29a 3208 | . 2 ⊢ (((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑥) = (𝐻‘𝑥)) |
30 | 3, 6, 29 | eqfnfvd 6855 | 1 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 Vcvv 3408 class class class wbr 5053 ↦ cmpt 5135 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ↑m cmap 8508 ℂcc 10727 ℤcz 12176 ℤ≥cuz 12438 ⇝ cli 15045 ⇝𝑢culm 25268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-map 8510 df-pm 8511 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-seq 13575 df-exp 13636 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-ulm 25269 |
This theorem is referenced by: ulmdm 25285 |
Copyright terms: Public domain | W3C validator |