Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ulmuni | Structured version Visualization version GIF version |
Description: A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.) |
Ref | Expression |
---|---|
ulmuni | ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmcl 25445 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺:𝑆⟶ℂ) |
3 | 2 | ffnd 6585 | . 2 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 Fn 𝑆) |
4 | ulmcl 25445 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐻 → 𝐻:𝑆⟶ℂ) | |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐻:𝑆⟶ℂ) |
6 | 5 | ffnd 6585 | . 2 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐻 Fn 𝑆) |
7 | eqid 2738 | . . . . 5 ⊢ (ℤ≥‘𝑛) = (ℤ≥‘𝑛) | |
8 | simplr 765 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝑛 ∈ ℤ) | |
9 | simpr 484 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) | |
10 | simpllr 772 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝑥 ∈ 𝑆) | |
11 | fvex 6769 | . . . . . . 7 ⊢ (ℤ≥‘𝑛) ∈ V | |
12 | 11 | mptex 7081 | . . . . . 6 ⊢ (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ∈ V |
13 | 12 | a1i 11 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ∈ V) |
14 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → (𝐹‘𝑖) = (𝐹‘𝑘)) | |
15 | 14 | fveq1d 6758 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑘)‘𝑥)) |
16 | eqid 2738 | . . . . . . . 8 ⊢ (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) = (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) | |
17 | fvex 6769 | . . . . . . . 8 ⊢ ((𝐹‘𝑘)‘𝑥) ∈ V | |
18 | 15, 16, 17 | fvmpt 6857 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑛) → ((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥))‘𝑘) = ((𝐹‘𝑘)‘𝑥)) |
19 | 18 | eqcomd 2744 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑛) → ((𝐹‘𝑘)‘𝑥) = ((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥))‘𝑘)) |
20 | 19 | adantl 481 | . . . . 5 ⊢ ((((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑘)‘𝑥) = ((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥))‘𝑘)) |
21 | simp-4l 779 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹(⇝𝑢‘𝑆)𝐺) | |
22 | 7, 8, 9, 10, 13, 20, 21 | ulmclm 25451 | . . . 4 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐺‘𝑥)) |
23 | simp-4r 780 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹(⇝𝑢‘𝑆)𝐻) | |
24 | 7, 8, 9, 10, 13, 20, 23 | ulmclm 25451 | . . . 4 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐻‘𝑥)) |
25 | climuni 15189 | . . . 4 ⊢ (((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐺‘𝑥) ∧ (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐻‘𝑥)) → (𝐺‘𝑥) = (𝐻‘𝑥)) | |
26 | 22, 24, 25 | syl2anc 583 | . . 3 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) → (𝐺‘𝑥) = (𝐻‘𝑥)) |
27 | ulmf 25446 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) | |
28 | 27 | ad2antrr 722 | . . 3 ⊢ (((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) → ∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) |
29 | 26, 28 | r19.29a 3217 | . 2 ⊢ (((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑥) = (𝐻‘𝑥)) |
30 | 3, 6, 29 | eqfnfvd 6894 | 1 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 class class class wbr 5070 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℂcc 10800 ℤcz 12249 ℤ≥cuz 12511 ⇝ cli 15121 ⇝𝑢culm 25440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-ulm 25441 |
This theorem is referenced by: ulmdm 25457 |
Copyright terms: Public domain | W3C validator |