HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnvunop Structured version   Visualization version   GIF version

Theorem cnvunop 30276
Description: The inverse (converse) of a unitary operator in Hilbert space is unitary. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
cnvunop (𝑇 ∈ UniOp → 𝑇 ∈ UniOp)

Proof of Theorem cnvunop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopf1o 30274 . . 3 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)
2 f1ocnv 6726 . . . 4 (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ–1-1-onto→ ℋ)
3 f1ofo 6721 . . . 4 (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ–onto→ ℋ)
42, 3syl 17 . . 3 (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ–onto→ ℋ)
51, 4syl 17 . 2 (𝑇 ∈ UniOp → 𝑇: ℋ–onto→ ℋ)
6 simpl 483 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑇 ∈ UniOp)
7 fof 6686 . . . . . . . 8 (𝑇: ℋ–onto→ ℋ → 𝑇: ℋ⟶ ℋ)
85, 7syl 17 . . . . . . 7 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
98ffvelrnda 6958 . . . . . 6 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
109adantrr 714 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑥) ∈ ℋ)
118ffvelrnda 6958 . . . . . 6 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
1211adantrl 713 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑦) ∈ ℋ)
13 unop 30273 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((𝑇‘(𝑇𝑥)) ·ih (𝑇‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
146, 10, 12, 13syl3anc 1370 . . . 4 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘(𝑇𝑥)) ·ih (𝑇‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
15 f1ocnvfv2 7146 . . . . . . 7 ((𝑇: ℋ–1-1-onto→ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑇𝑥)) = 𝑥)
1615adantrr 714 . . . . . 6 ((𝑇: ℋ–1-1-onto→ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇‘(𝑇𝑥)) = 𝑥)
17 f1ocnvfv2 7146 . . . . . . 7 ((𝑇: ℋ–1-1-onto→ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑇𝑦)) = 𝑦)
1817adantrl 713 . . . . . 6 ((𝑇: ℋ–1-1-onto→ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇‘(𝑇𝑦)) = 𝑦)
1916, 18oveq12d 7289 . . . . 5 ((𝑇: ℋ–1-1-onto→ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘(𝑇𝑥)) ·ih (𝑇‘(𝑇𝑦))) = (𝑥 ·ih 𝑦))
201, 19sylan 580 . . . 4 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘(𝑇𝑥)) ·ih (𝑇‘(𝑇𝑦))) = (𝑥 ·ih 𝑦))
2114, 20eqtr3d 2782 . . 3 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
2221ralrimivva 3117 . 2 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
23 elunop 30230 . 2 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
245, 22, 23sylanbrc 583 1 (𝑇 ∈ UniOp → 𝑇 ∈ UniOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  ccnv 5589  wf 6428  ontowfo 6430  1-1-ontowf1o 6431  cfv 6432  (class class class)co 7271  chba 29277   ·ih csp 29280  UniOpcuo 29307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-hilex 29357  ax-hfvadd 29358  ax-hvcom 29359  ax-hvass 29360  ax-hv0cl 29361  ax-hvaddid 29362  ax-hfvmul 29363  ax-hvmulid 29364  ax-hvdistr2 29367  ax-hvmul0 29368  ax-hfi 29437  ax-his1 29440  ax-his2 29441  ax-his3 29442  ax-his4 29443
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-cj 14808  df-re 14809  df-im 14810  df-hvsub 29329  df-unop 30201
This theorem is referenced by:  unoplin  30278  unopadj2  30296
  Copyright terms: Public domain W3C validator