![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cnvunop | Structured version Visualization version GIF version |
Description: The inverse (converse) of a unitary operator in Hilbert space is unitary. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnvunop | ⊢ (𝑇 ∈ UniOp → ◡𝑇 ∈ UniOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unopf1o 31849 | . . 3 ⊢ (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ) | |
2 | f1ocnv 6855 | . . . 4 ⊢ (𝑇: ℋ–1-1-onto→ ℋ → ◡𝑇: ℋ–1-1-onto→ ℋ) | |
3 | f1ofo 6850 | . . . 4 ⊢ (◡𝑇: ℋ–1-1-onto→ ℋ → ◡𝑇: ℋ–onto→ ℋ) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑇: ℋ–1-1-onto→ ℋ → ◡𝑇: ℋ–onto→ ℋ) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝑇 ∈ UniOp → ◡𝑇: ℋ–onto→ ℋ) |
6 | simpl 481 | . . . . 5 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑇 ∈ UniOp) | |
7 | fof 6815 | . . . . . . . 8 ⊢ (◡𝑇: ℋ–onto→ ℋ → ◡𝑇: ℋ⟶ ℋ) | |
8 | 5, 7 | syl 17 | . . . . . . 7 ⊢ (𝑇 ∈ UniOp → ◡𝑇: ℋ⟶ ℋ) |
9 | 8 | ffvelcdmda 7098 | . . . . . 6 ⊢ ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ) → (◡𝑇‘𝑥) ∈ ℋ) |
10 | 9 | adantrr 715 | . . . . 5 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (◡𝑇‘𝑥) ∈ ℋ) |
11 | 8 | ffvelcdmda 7098 | . . . . . 6 ⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (◡𝑇‘𝑦) ∈ ℋ) |
12 | 11 | adantrl 714 | . . . . 5 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (◡𝑇‘𝑦) ∈ ℋ) |
13 | unop 31848 | . . . . 5 ⊢ ((𝑇 ∈ UniOp ∧ (◡𝑇‘𝑥) ∈ ℋ ∧ (◡𝑇‘𝑦) ∈ ℋ) → ((𝑇‘(◡𝑇‘𝑥)) ·ih (𝑇‘(◡𝑇‘𝑦))) = ((◡𝑇‘𝑥) ·ih (◡𝑇‘𝑦))) | |
14 | 6, 10, 12, 13 | syl3anc 1368 | . . . 4 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘(◡𝑇‘𝑥)) ·ih (𝑇‘(◡𝑇‘𝑦))) = ((◡𝑇‘𝑥) ·ih (◡𝑇‘𝑦))) |
15 | f1ocnvfv2 7291 | . . . . . . 7 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(◡𝑇‘𝑥)) = 𝑥) | |
16 | 15 | adantrr 715 | . . . . . 6 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇‘(◡𝑇‘𝑥)) = 𝑥) |
17 | f1ocnvfv2 7291 | . . . . . . 7 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(◡𝑇‘𝑦)) = 𝑦) | |
18 | 17 | adantrl 714 | . . . . . 6 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇‘(◡𝑇‘𝑦)) = 𝑦) |
19 | 16, 18 | oveq12d 7442 | . . . . 5 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘(◡𝑇‘𝑥)) ·ih (𝑇‘(◡𝑇‘𝑦))) = (𝑥 ·ih 𝑦)) |
20 | 1, 19 | sylan 578 | . . . 4 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘(◡𝑇‘𝑥)) ·ih (𝑇‘(◡𝑇‘𝑦))) = (𝑥 ·ih 𝑦)) |
21 | 14, 20 | eqtr3d 2768 | . . 3 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((◡𝑇‘𝑥) ·ih (◡𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
22 | 21 | ralrimivva 3191 | . 2 ⊢ (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((◡𝑇‘𝑥) ·ih (◡𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
23 | elunop 31805 | . 2 ⊢ (◡𝑇 ∈ UniOp ↔ (◡𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((◡𝑇‘𝑥) ·ih (◡𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) | |
24 | 5, 22, 23 | sylanbrc 581 | 1 ⊢ (𝑇 ∈ UniOp → ◡𝑇 ∈ UniOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ◡ccnv 5681 ⟶wf 6550 –onto→wfo 6552 –1-1-onto→wf1o 6553 ‘cfv 6554 (class class class)co 7424 ℋchba 30852 ·ih csp 30855 UniOpcuo 30882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-hilex 30932 ax-hfvadd 30933 ax-hvcom 30934 ax-hvass 30935 ax-hv0cl 30936 ax-hvaddid 30937 ax-hfvmul 30938 ax-hvmulid 30939 ax-hvdistr2 30942 ax-hvmul0 30943 ax-hfi 31012 ax-his1 31015 ax-his2 31016 ax-his3 31017 ax-his4 31018 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-2 12327 df-cj 15104 df-re 15105 df-im 15106 df-hvsub 30904 df-unop 31776 |
This theorem is referenced by: unoplin 31853 unopadj2 31871 |
Copyright terms: Public domain | W3C validator |