Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cnvunop | Structured version Visualization version GIF version |
Description: The inverse (converse) of a unitary operator in Hilbert space is unitary. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnvunop | ⊢ (𝑇 ∈ UniOp → ◡𝑇 ∈ UniOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unopf1o 30274 | . . 3 ⊢ (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ) | |
2 | f1ocnv 6726 | . . . 4 ⊢ (𝑇: ℋ–1-1-onto→ ℋ → ◡𝑇: ℋ–1-1-onto→ ℋ) | |
3 | f1ofo 6721 | . . . 4 ⊢ (◡𝑇: ℋ–1-1-onto→ ℋ → ◡𝑇: ℋ–onto→ ℋ) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑇: ℋ–1-1-onto→ ℋ → ◡𝑇: ℋ–onto→ ℋ) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝑇 ∈ UniOp → ◡𝑇: ℋ–onto→ ℋ) |
6 | simpl 483 | . . . . 5 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑇 ∈ UniOp) | |
7 | fof 6686 | . . . . . . . 8 ⊢ (◡𝑇: ℋ–onto→ ℋ → ◡𝑇: ℋ⟶ ℋ) | |
8 | 5, 7 | syl 17 | . . . . . . 7 ⊢ (𝑇 ∈ UniOp → ◡𝑇: ℋ⟶ ℋ) |
9 | 8 | ffvelrnda 6958 | . . . . . 6 ⊢ ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ) → (◡𝑇‘𝑥) ∈ ℋ) |
10 | 9 | adantrr 714 | . . . . 5 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (◡𝑇‘𝑥) ∈ ℋ) |
11 | 8 | ffvelrnda 6958 | . . . . . 6 ⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (◡𝑇‘𝑦) ∈ ℋ) |
12 | 11 | adantrl 713 | . . . . 5 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (◡𝑇‘𝑦) ∈ ℋ) |
13 | unop 30273 | . . . . 5 ⊢ ((𝑇 ∈ UniOp ∧ (◡𝑇‘𝑥) ∈ ℋ ∧ (◡𝑇‘𝑦) ∈ ℋ) → ((𝑇‘(◡𝑇‘𝑥)) ·ih (𝑇‘(◡𝑇‘𝑦))) = ((◡𝑇‘𝑥) ·ih (◡𝑇‘𝑦))) | |
14 | 6, 10, 12, 13 | syl3anc 1370 | . . . 4 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘(◡𝑇‘𝑥)) ·ih (𝑇‘(◡𝑇‘𝑦))) = ((◡𝑇‘𝑥) ·ih (◡𝑇‘𝑦))) |
15 | f1ocnvfv2 7146 | . . . . . . 7 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(◡𝑇‘𝑥)) = 𝑥) | |
16 | 15 | adantrr 714 | . . . . . 6 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇‘(◡𝑇‘𝑥)) = 𝑥) |
17 | f1ocnvfv2 7146 | . . . . . . 7 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(◡𝑇‘𝑦)) = 𝑦) | |
18 | 17 | adantrl 713 | . . . . . 6 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇‘(◡𝑇‘𝑦)) = 𝑦) |
19 | 16, 18 | oveq12d 7289 | . . . . 5 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘(◡𝑇‘𝑥)) ·ih (𝑇‘(◡𝑇‘𝑦))) = (𝑥 ·ih 𝑦)) |
20 | 1, 19 | sylan 580 | . . . 4 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘(◡𝑇‘𝑥)) ·ih (𝑇‘(◡𝑇‘𝑦))) = (𝑥 ·ih 𝑦)) |
21 | 14, 20 | eqtr3d 2782 | . . 3 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((◡𝑇‘𝑥) ·ih (◡𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
22 | 21 | ralrimivva 3117 | . 2 ⊢ (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((◡𝑇‘𝑥) ·ih (◡𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
23 | elunop 30230 | . 2 ⊢ (◡𝑇 ∈ UniOp ↔ (◡𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((◡𝑇‘𝑥) ·ih (◡𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) | |
24 | 5, 22, 23 | sylanbrc 583 | 1 ⊢ (𝑇 ∈ UniOp → ◡𝑇 ∈ UniOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ◡ccnv 5589 ⟶wf 6428 –onto→wfo 6430 –1-1-onto→wf1o 6431 ‘cfv 6432 (class class class)co 7271 ℋchba 29277 ·ih csp 29280 UniOpcuo 29307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-hilex 29357 ax-hfvadd 29358 ax-hvcom 29359 ax-hvass 29360 ax-hv0cl 29361 ax-hvaddid 29362 ax-hfvmul 29363 ax-hvmulid 29364 ax-hvdistr2 29367 ax-hvmul0 29368 ax-hfi 29437 ax-his1 29440 ax-his2 29441 ax-his3 29442 ax-his4 29443 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 df-cj 14808 df-re 14809 df-im 14810 df-hvsub 29329 df-unop 30201 |
This theorem is referenced by: unoplin 30278 unopadj2 30296 |
Copyright terms: Public domain | W3C validator |