HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnvunop Structured version   Visualization version   GIF version

Theorem cnvunop 29689
Description: The inverse (converse) of a unitary operator in Hilbert space is unitary. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
cnvunop (𝑇 ∈ UniOp → 𝑇 ∈ UniOp)

Proof of Theorem cnvunop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopf1o 29687 . . 3 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)
2 f1ocnv 6621 . . . 4 (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ–1-1-onto→ ℋ)
3 f1ofo 6616 . . . 4 (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ–onto→ ℋ)
42, 3syl 17 . . 3 (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ–onto→ ℋ)
51, 4syl 17 . 2 (𝑇 ∈ UniOp → 𝑇: ℋ–onto→ ℋ)
6 simpl 485 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑇 ∈ UniOp)
7 fof 6584 . . . . . . . 8 (𝑇: ℋ–onto→ ℋ → 𝑇: ℋ⟶ ℋ)
85, 7syl 17 . . . . . . 7 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
98ffvelrnda 6845 . . . . . 6 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
109adantrr 715 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑥) ∈ ℋ)
118ffvelrnda 6845 . . . . . 6 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
1211adantrl 714 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑦) ∈ ℋ)
13 unop 29686 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((𝑇‘(𝑇𝑥)) ·ih (𝑇‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
146, 10, 12, 13syl3anc 1367 . . . 4 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘(𝑇𝑥)) ·ih (𝑇‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
15 f1ocnvfv2 7028 . . . . . . 7 ((𝑇: ℋ–1-1-onto→ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑇𝑥)) = 𝑥)
1615adantrr 715 . . . . . 6 ((𝑇: ℋ–1-1-onto→ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇‘(𝑇𝑥)) = 𝑥)
17 f1ocnvfv2 7028 . . . . . . 7 ((𝑇: ℋ–1-1-onto→ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑇𝑦)) = 𝑦)
1817adantrl 714 . . . . . 6 ((𝑇: ℋ–1-1-onto→ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇‘(𝑇𝑦)) = 𝑦)
1916, 18oveq12d 7168 . . . . 5 ((𝑇: ℋ–1-1-onto→ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘(𝑇𝑥)) ·ih (𝑇‘(𝑇𝑦))) = (𝑥 ·ih 𝑦))
201, 19sylan 582 . . . 4 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘(𝑇𝑥)) ·ih (𝑇‘(𝑇𝑦))) = (𝑥 ·ih 𝑦))
2114, 20eqtr3d 2858 . . 3 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
2221ralrimivva 3191 . 2 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
23 elunop 29643 . 2 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
245, 22, 23sylanbrc 585 1 (𝑇 ∈ UniOp → 𝑇 ∈ UniOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  ccnv 5548  wf 6345  ontowfo 6347  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  chba 28690   ·ih csp 28693  UniOpcuo 28720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-hilex 28770  ax-hfvadd 28771  ax-hvcom 28772  ax-hvass 28773  ax-hv0cl 28774  ax-hvaddid 28775  ax-hfvmul 28776  ax-hvmulid 28777  ax-hvdistr2 28780  ax-hvmul0 28781  ax-hfi 28850  ax-his1 28853  ax-his2 28854  ax-his3 28855  ax-his4 28856
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-2 11694  df-cj 14452  df-re 14453  df-im 14454  df-hvsub 28742  df-unop 29614
This theorem is referenced by:  unoplin  29691  unopadj2  29709
  Copyright terms: Public domain W3C validator