| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cnvunop | Structured version Visualization version GIF version | ||
| Description: The inverse (converse) of a unitary operator in Hilbert space is unitary. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cnvunop | ⊢ (𝑇 ∈ UniOp → ◡𝑇 ∈ UniOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopf1o 31896 | . . 3 ⊢ (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ) | |
| 2 | f1ocnv 6775 | . . . 4 ⊢ (𝑇: ℋ–1-1-onto→ ℋ → ◡𝑇: ℋ–1-1-onto→ ℋ) | |
| 3 | f1ofo 6770 | . . . 4 ⊢ (◡𝑇: ℋ–1-1-onto→ ℋ → ◡𝑇: ℋ–onto→ ℋ) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑇: ℋ–1-1-onto→ ℋ → ◡𝑇: ℋ–onto→ ℋ) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝑇 ∈ UniOp → ◡𝑇: ℋ–onto→ ℋ) |
| 6 | simpl 482 | . . . . 5 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑇 ∈ UniOp) | |
| 7 | fof 6735 | . . . . . . . 8 ⊢ (◡𝑇: ℋ–onto→ ℋ → ◡𝑇: ℋ⟶ ℋ) | |
| 8 | 5, 7 | syl 17 | . . . . . . 7 ⊢ (𝑇 ∈ UniOp → ◡𝑇: ℋ⟶ ℋ) |
| 9 | 8 | ffvelcdmda 7017 | . . . . . 6 ⊢ ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ) → (◡𝑇‘𝑥) ∈ ℋ) |
| 10 | 9 | adantrr 717 | . . . . 5 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (◡𝑇‘𝑥) ∈ ℋ) |
| 11 | 8 | ffvelcdmda 7017 | . . . . . 6 ⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (◡𝑇‘𝑦) ∈ ℋ) |
| 12 | 11 | adantrl 716 | . . . . 5 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (◡𝑇‘𝑦) ∈ ℋ) |
| 13 | unop 31895 | . . . . 5 ⊢ ((𝑇 ∈ UniOp ∧ (◡𝑇‘𝑥) ∈ ℋ ∧ (◡𝑇‘𝑦) ∈ ℋ) → ((𝑇‘(◡𝑇‘𝑥)) ·ih (𝑇‘(◡𝑇‘𝑦))) = ((◡𝑇‘𝑥) ·ih (◡𝑇‘𝑦))) | |
| 14 | 6, 10, 12, 13 | syl3anc 1373 | . . . 4 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘(◡𝑇‘𝑥)) ·ih (𝑇‘(◡𝑇‘𝑦))) = ((◡𝑇‘𝑥) ·ih (◡𝑇‘𝑦))) |
| 15 | f1ocnvfv2 7211 | . . . . . . 7 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(◡𝑇‘𝑥)) = 𝑥) | |
| 16 | 15 | adantrr 717 | . . . . . 6 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇‘(◡𝑇‘𝑥)) = 𝑥) |
| 17 | f1ocnvfv2 7211 | . . . . . . 7 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(◡𝑇‘𝑦)) = 𝑦) | |
| 18 | 17 | adantrl 716 | . . . . . 6 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇‘(◡𝑇‘𝑦)) = 𝑦) |
| 19 | 16, 18 | oveq12d 7364 | . . . . 5 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘(◡𝑇‘𝑥)) ·ih (𝑇‘(◡𝑇‘𝑦))) = (𝑥 ·ih 𝑦)) |
| 20 | 1, 19 | sylan 580 | . . . 4 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘(◡𝑇‘𝑥)) ·ih (𝑇‘(◡𝑇‘𝑦))) = (𝑥 ·ih 𝑦)) |
| 21 | 14, 20 | eqtr3d 2768 | . . 3 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((◡𝑇‘𝑥) ·ih (◡𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
| 22 | 21 | ralrimivva 3175 | . 2 ⊢ (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((◡𝑇‘𝑥) ·ih (◡𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
| 23 | elunop 31852 | . 2 ⊢ (◡𝑇 ∈ UniOp ↔ (◡𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((◡𝑇‘𝑥) ·ih (◡𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) | |
| 24 | 5, 22, 23 | sylanbrc 583 | 1 ⊢ (𝑇 ∈ UniOp → ◡𝑇 ∈ UniOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ◡ccnv 5613 ⟶wf 6477 –onto→wfo 6479 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ℋchba 30899 ·ih csp 30902 UniOpcuo 30929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-hilex 30979 ax-hfvadd 30980 ax-hvcom 30981 ax-hvass 30982 ax-hv0cl 30983 ax-hvaddid 30984 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvdistr2 30989 ax-hvmul0 30990 ax-hfi 31059 ax-his1 31062 ax-his2 31063 ax-his3 31064 ax-his4 31065 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-cj 15006 df-re 15007 df-im 15008 df-hvsub 30951 df-unop 31823 |
| This theorem is referenced by: unoplin 31900 unopadj2 31918 |
| Copyright terms: Public domain | W3C validator |