HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unopadj Structured version   Visualization version   GIF version

Theorem unopadj 29302
Description: The inverse (converse) of a unitary operator is its adjoint. Equation 2 of [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unopadj ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih 𝐵) = (𝐴 ·ih (𝑇𝐵)))

Proof of Theorem unopadj
StepHypRef Expression
1 unopf1o 29299 . . . . 5 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)
2 f1ocnvfv2 6762 . . . . 5 ((𝑇: ℋ–1-1-onto→ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝑇𝐵)) = 𝐵)
31, 2sylan 576 . . . 4 ((𝑇 ∈ UniOp ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝑇𝐵)) = 𝐵)
433adant2 1162 . . 3 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝑇𝐵)) = 𝐵)
54oveq2d 6895 . 2 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih (𝑇‘(𝑇𝐵))) = ((𝑇𝐴) ·ih 𝐵))
6 f1ocnv 6369 . . . . . 6 (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ–1-1-onto→ ℋ)
7 f1of 6357 . . . . . 6 (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ⟶ ℋ)
81, 6, 73syl 18 . . . . 5 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
98ffvelrnda 6586 . . . 4 ((𝑇 ∈ UniOp ∧ 𝐵 ∈ ℋ) → (𝑇𝐵) ∈ ℋ)
1093adant2 1162 . . 3 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇𝐵) ∈ ℋ)
11 unop 29298 . . 3 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ (𝑇𝐵) ∈ ℋ) → ((𝑇𝐴) ·ih (𝑇‘(𝑇𝐵))) = (𝐴 ·ih (𝑇𝐵)))
1210, 11syld3an3 1529 . 2 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih (𝑇‘(𝑇𝐵))) = (𝐴 ·ih (𝑇𝐵)))
135, 12eqtr3d 2836 1 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih 𝐵) = (𝐴 ·ih (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1108   = wceq 1653  wcel 2157  ccnv 5312  wf 6098  1-1-ontowf1o 6101  cfv 6102  (class class class)co 6879  chba 28300   ·ih csp 28303  UniOpcuo 28330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-hilex 28380  ax-hfvadd 28381  ax-hvcom 28382  ax-hvass 28383  ax-hv0cl 28384  ax-hvaddid 28385  ax-hfvmul 28386  ax-hvmulid 28387  ax-hvdistr2 28390  ax-hvmul0 28391  ax-hfi 28460  ax-his1 28463  ax-his2 28464  ax-his3 28465  ax-his4 28466
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-po 5234  df-so 5235  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-er 7983  df-en 8197  df-dom 8198  df-sdom 8199  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-2 11375  df-cj 14179  df-re 14180  df-im 14181  df-hvsub 28352  df-unop 29226
This theorem is referenced by:  unoplin  29303  unopadj2  29321
  Copyright terms: Public domain W3C validator