Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > unopadj | Structured version Visualization version GIF version |
Description: The inverse (converse) of a unitary operator is its adjoint. Equation 2 of [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
unopadj | ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih (◡𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unopf1o 30179 | . . . . 5 ⊢ (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ) | |
2 | f1ocnvfv2 7130 | . . . . 5 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(◡𝑇‘𝐵)) = 𝐵) | |
3 | 1, 2 | sylan 579 | . . . 4 ⊢ ((𝑇 ∈ UniOp ∧ 𝐵 ∈ ℋ) → (𝑇‘(◡𝑇‘𝐵)) = 𝐵) |
4 | 3 | 3adant2 1129 | . . 3 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(◡𝑇‘𝐵)) = 𝐵) |
5 | 4 | oveq2d 7271 | . 2 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih (𝑇‘(◡𝑇‘𝐵))) = ((𝑇‘𝐴) ·ih 𝐵)) |
6 | f1ocnv 6712 | . . . . . 6 ⊢ (𝑇: ℋ–1-1-onto→ ℋ → ◡𝑇: ℋ–1-1-onto→ ℋ) | |
7 | f1of 6700 | . . . . . 6 ⊢ (◡𝑇: ℋ–1-1-onto→ ℋ → ◡𝑇: ℋ⟶ ℋ) | |
8 | 1, 6, 7 | 3syl 18 | . . . . 5 ⊢ (𝑇 ∈ UniOp → ◡𝑇: ℋ⟶ ℋ) |
9 | 8 | ffvelrnda 6943 | . . . 4 ⊢ ((𝑇 ∈ UniOp ∧ 𝐵 ∈ ℋ) → (◡𝑇‘𝐵) ∈ ℋ) |
10 | 9 | 3adant2 1129 | . . 3 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (◡𝑇‘𝐵) ∈ ℋ) |
11 | unop 30178 | . . 3 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ (◡𝑇‘𝐵) ∈ ℋ) → ((𝑇‘𝐴) ·ih (𝑇‘(◡𝑇‘𝐵))) = (𝐴 ·ih (◡𝑇‘𝐵))) | |
12 | 10, 11 | syld3an3 1407 | . 2 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih (𝑇‘(◡𝑇‘𝐵))) = (𝐴 ·ih (◡𝑇‘𝐵))) |
13 | 5, 12 | eqtr3d 2780 | 1 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih (◡𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ◡ccnv 5579 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 ℋchba 29182 ·ih csp 29185 UniOpcuo 29212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his2 29346 ax-his3 29347 ax-his4 29348 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-cj 14738 df-re 14739 df-im 14740 df-hvsub 29234 df-unop 30106 |
This theorem is referenced by: unoplin 30183 unopadj2 30201 |
Copyright terms: Public domain | W3C validator |