![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > unopadj | Structured version Visualization version GIF version |
Description: The inverse (converse) of a unitary operator is its adjoint. Equation 2 of [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
unopadj | ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih (◡𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unopf1o 29299 | . . . . 5 ⊢ (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ) | |
2 | f1ocnvfv2 6762 | . . . . 5 ⊢ ((𝑇: ℋ–1-1-onto→ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(◡𝑇‘𝐵)) = 𝐵) | |
3 | 1, 2 | sylan 576 | . . . 4 ⊢ ((𝑇 ∈ UniOp ∧ 𝐵 ∈ ℋ) → (𝑇‘(◡𝑇‘𝐵)) = 𝐵) |
4 | 3 | 3adant2 1162 | . . 3 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(◡𝑇‘𝐵)) = 𝐵) |
5 | 4 | oveq2d 6895 | . 2 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih (𝑇‘(◡𝑇‘𝐵))) = ((𝑇‘𝐴) ·ih 𝐵)) |
6 | f1ocnv 6369 | . . . . . 6 ⊢ (𝑇: ℋ–1-1-onto→ ℋ → ◡𝑇: ℋ–1-1-onto→ ℋ) | |
7 | f1of 6357 | . . . . . 6 ⊢ (◡𝑇: ℋ–1-1-onto→ ℋ → ◡𝑇: ℋ⟶ ℋ) | |
8 | 1, 6, 7 | 3syl 18 | . . . . 5 ⊢ (𝑇 ∈ UniOp → ◡𝑇: ℋ⟶ ℋ) |
9 | 8 | ffvelrnda 6586 | . . . 4 ⊢ ((𝑇 ∈ UniOp ∧ 𝐵 ∈ ℋ) → (◡𝑇‘𝐵) ∈ ℋ) |
10 | 9 | 3adant2 1162 | . . 3 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (◡𝑇‘𝐵) ∈ ℋ) |
11 | unop 29298 | . . 3 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ (◡𝑇‘𝐵) ∈ ℋ) → ((𝑇‘𝐴) ·ih (𝑇‘(◡𝑇‘𝐵))) = (𝐴 ·ih (◡𝑇‘𝐵))) | |
12 | 10, 11 | syld3an3 1529 | . 2 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih (𝑇‘(◡𝑇‘𝐵))) = (𝐴 ·ih (◡𝑇‘𝐵))) |
13 | 5, 12 | eqtr3d 2836 | 1 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih (◡𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ◡ccnv 5312 ⟶wf 6098 –1-1-onto→wf1o 6101 ‘cfv 6102 (class class class)co 6879 ℋchba 28300 ·ih csp 28303 UniOpcuo 28330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 ax-hilex 28380 ax-hfvadd 28381 ax-hvcom 28382 ax-hvass 28383 ax-hv0cl 28384 ax-hvaddid 28385 ax-hfvmul 28386 ax-hvmulid 28387 ax-hvdistr2 28390 ax-hvmul0 28391 ax-hfi 28460 ax-his1 28463 ax-his2 28464 ax-his3 28465 ax-his4 28466 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-po 5234 df-so 5235 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-div 10978 df-2 11375 df-cj 14179 df-re 14180 df-im 14181 df-hvsub 28352 df-unop 29226 |
This theorem is referenced by: unoplin 29303 unopadj2 29321 |
Copyright terms: Public domain | W3C validator |