| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upgrimtrls | Structured version Visualization version GIF version | ||
| Description: Graph isomorphisms between simple pseudographs map trails onto trails. (Contributed by AV, 29-Oct-2025.) |
| Ref | Expression |
|---|---|
| upgrimwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| upgrimwlk.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| upgrimwlk.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| upgrimwlk.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| upgrimwlk.n | ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| upgrimwlk.e | ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| upgrimtrls.t | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| Ref | Expression |
|---|---|
| upgrimtrls | ⊢ (𝜑 → 𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | upgrimwlk.j | . . 3 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 3 | upgrimwlk.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USPGraph) | |
| 4 | upgrimwlk.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USPGraph) | |
| 5 | upgrimwlk.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) | |
| 6 | upgrimwlk.e | . . 3 ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) | |
| 7 | upgrimtrls.t | . . . 4 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
| 8 | trliswlk 29674 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | upgrimwlk 48001 | . 2 ⊢ (𝜑 → 𝐸(Walks‘𝐻)(𝑁 ∘ 𝑃)) |
| 11 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝐻 ∈ USPGraph) |
| 12 | 2 | uspgrf1oedg 29151 | . . . . . . . 8 ⊢ (𝐻 ∈ USPGraph → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 14 | 1, 2, 3, 4, 5, 6, 7 | upgrimtrlslem1 48003 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ (Edg‘𝐻)) |
| 15 | f1ocnvdm 7219 | . . . . . . 7 ⊢ ((𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻) ∧ (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ (Edg‘𝐻)) → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽) | |
| 16 | 13, 14, 15 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽) |
| 17 | 16 | ralrimiva 3124 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ dom 𝐹(◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽) |
| 18 | 1, 2, 3, 4, 5, 6, 7 | upgrimtrlslem2 48004 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → ((◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑦)))) → 𝑥 = 𝑦)) |
| 19 | 18 | ralrimivva 3175 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹((◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑦)))) → 𝑥 = 𝑦)) |
| 20 | 2fveq3 6827 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦))) | |
| 21 | 20 | imaeq2d 6008 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑁 “ (𝐼‘(𝐹‘𝑥))) = (𝑁 “ (𝐼‘(𝐹‘𝑦)))) |
| 22 | 21 | fveq2d 6826 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑦))))) |
| 23 | 6, 22 | f1mpt 7195 | . . . . 5 ⊢ (𝐸:dom 𝐹–1-1→dom 𝐽 ↔ (∀𝑥 ∈ dom 𝐹(◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹((◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑦)))) → 𝑥 = 𝑦))) |
| 24 | 17, 19, 23 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝐸:dom 𝐹–1-1→dom 𝐽) |
| 25 | eqidd 2732 | . . . . 5 ⊢ (𝜑 → 𝐸 = 𝐸) | |
| 26 | 1 | wlkf 29593 | . . . . . . . . 9 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 27 | 7, 8, 26 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| 28 | 1, 2, 3, 4, 5, 6, 27 | upgrimwlklem1 47996 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐸) = (♯‘𝐹)) |
| 29 | 28 | oveq2d 7362 | . . . . . 6 ⊢ (𝜑 → (0..^(♯‘𝐸)) = (0..^(♯‘𝐹))) |
| 30 | wrddm 14428 | . . . . . . . 8 ⊢ (𝐹 ∈ Word dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹))) | |
| 31 | 8, 26, 30 | 3syl 18 | . . . . . . 7 ⊢ (𝐹(Trails‘𝐺)𝑃 → dom 𝐹 = (0..^(♯‘𝐹))) |
| 32 | 7, 31 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom 𝐹 = (0..^(♯‘𝐹))) |
| 33 | 29, 32 | eqtr4d 2769 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐸)) = dom 𝐹) |
| 34 | eqidd 2732 | . . . . 5 ⊢ (𝜑 → dom 𝐽 = dom 𝐽) | |
| 35 | 25, 33, 34 | f1eq123d 6755 | . . . 4 ⊢ (𝜑 → (𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽 ↔ 𝐸:dom 𝐹–1-1→dom 𝐽)) |
| 36 | 24, 35 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽) |
| 37 | df-f1 6486 | . . . 4 ⊢ (𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽 ↔ (𝐸:(0..^(♯‘𝐸))⟶dom 𝐽 ∧ Fun ◡𝐸)) | |
| 38 | 37 | simprbi 496 | . . 3 ⊢ (𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽 → Fun ◡𝐸) |
| 39 | 36, 38 | syl 17 | . 2 ⊢ (𝜑 → Fun ◡𝐸) |
| 40 | istrl 29673 | . 2 ⊢ (𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃) ↔ (𝐸(Walks‘𝐻)(𝑁 ∘ 𝑃) ∧ Fun ◡𝐸)) | |
| 41 | 10, 39, 40 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5089 ↦ cmpt 5170 ◡ccnv 5613 dom cdm 5614 “ cima 5617 ∘ ccom 5618 Fun wfun 6475 ⟶wf 6477 –1-1→wf1 6478 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ..^cfzo 13554 ♯chash 14237 Word cword 14420 iEdgciedg 28975 Edgcedg 29025 USPGraphcuspgr 29126 Walkscwlks 29575 Trailsctrls 29667 GraphIso cgrim 47974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-edg 29026 df-uhgr 29036 df-upgr 29060 df-uspgr 29128 df-wlks 29578 df-trls 29669 df-grim 47977 |
| This theorem is referenced by: upgrimpths 48008 upgrimspths 48009 |
| Copyright terms: Public domain | W3C validator |