| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upgrimtrls | Structured version Visualization version GIF version | ||
| Description: Graph isomorphisms between simple pseudographs map trails onto trails. (Contributed by AV, 29-Oct-2025.) |
| Ref | Expression |
|---|---|
| upgrimwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| upgrimwlk.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| upgrimwlk.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| upgrimwlk.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| upgrimwlk.n | ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| upgrimwlk.e | ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| upgrimtrls.t | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| Ref | Expression |
|---|---|
| upgrimtrls | ⊢ (𝜑 → 𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | upgrimwlk.j | . . 3 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 3 | upgrimwlk.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USPGraph) | |
| 4 | upgrimwlk.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USPGraph) | |
| 5 | upgrimwlk.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) | |
| 6 | upgrimwlk.e | . . 3 ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) | |
| 7 | upgrimtrls.t | . . . 4 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
| 8 | trliswlk 29623 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | upgrimwlk 47863 | . 2 ⊢ (𝜑 → 𝐸(Walks‘𝐻)(𝑁 ∘ 𝑃)) |
| 11 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝐻 ∈ USPGraph) |
| 12 | 2 | uspgrf1oedg 29098 | . . . . . . . 8 ⊢ (𝐻 ∈ USPGraph → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 14 | 1, 2, 3, 4, 5, 6, 7 | upgrimtrlslem1 47865 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ (Edg‘𝐻)) |
| 15 | f1ocnvdm 7277 | . . . . . . 7 ⊢ ((𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻) ∧ (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ (Edg‘𝐻)) → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽) | |
| 16 | 13, 14, 15 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽) |
| 17 | 16 | ralrimiva 3132 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ dom 𝐹(◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽) |
| 18 | 1, 2, 3, 4, 5, 6, 7 | upgrimtrlslem2 47866 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → ((◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑦)))) → 𝑥 = 𝑦)) |
| 19 | 18 | ralrimivva 3187 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹((◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑦)))) → 𝑥 = 𝑦)) |
| 20 | 2fveq3 6880 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦))) | |
| 21 | 20 | imaeq2d 6047 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑁 “ (𝐼‘(𝐹‘𝑥))) = (𝑁 “ (𝐼‘(𝐹‘𝑦)))) |
| 22 | 21 | fveq2d 6879 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑦))))) |
| 23 | 6, 22 | f1mpt 7253 | . . . . 5 ⊢ (𝐸:dom 𝐹–1-1→dom 𝐽 ↔ (∀𝑥 ∈ dom 𝐹(◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹((◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑦)))) → 𝑥 = 𝑦))) |
| 24 | 17, 19, 23 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝐸:dom 𝐹–1-1→dom 𝐽) |
| 25 | eqidd 2736 | . . . . 5 ⊢ (𝜑 → 𝐸 = 𝐸) | |
| 26 | 1 | wlkf 29540 | . . . . . . . . 9 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 27 | 7, 8, 26 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| 28 | 1, 2, 3, 4, 5, 6, 27 | upgrimwlklem1 47858 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐸) = (♯‘𝐹)) |
| 29 | 28 | oveq2d 7419 | . . . . . 6 ⊢ (𝜑 → (0..^(♯‘𝐸)) = (0..^(♯‘𝐹))) |
| 30 | wrddm 14537 | . . . . . . . 8 ⊢ (𝐹 ∈ Word dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹))) | |
| 31 | 8, 26, 30 | 3syl 18 | . . . . . . 7 ⊢ (𝐹(Trails‘𝐺)𝑃 → dom 𝐹 = (0..^(♯‘𝐹))) |
| 32 | 7, 31 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom 𝐹 = (0..^(♯‘𝐹))) |
| 33 | 29, 32 | eqtr4d 2773 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐸)) = dom 𝐹) |
| 34 | eqidd 2736 | . . . . 5 ⊢ (𝜑 → dom 𝐽 = dom 𝐽) | |
| 35 | 25, 33, 34 | f1eq123d 6809 | . . . 4 ⊢ (𝜑 → (𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽 ↔ 𝐸:dom 𝐹–1-1→dom 𝐽)) |
| 36 | 24, 35 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽) |
| 37 | df-f1 6535 | . . . 4 ⊢ (𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽 ↔ (𝐸:(0..^(♯‘𝐸))⟶dom 𝐽 ∧ Fun ◡𝐸)) | |
| 38 | 37 | simprbi 496 | . . 3 ⊢ (𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽 → Fun ◡𝐸) |
| 39 | 36, 38 | syl 17 | . 2 ⊢ (𝜑 → Fun ◡𝐸) |
| 40 | istrl 29622 | . 2 ⊢ (𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃) ↔ (𝐸(Walks‘𝐻)(𝑁 ∘ 𝑃) ∧ Fun ◡𝐸)) | |
| 41 | 10, 39, 40 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 class class class wbr 5119 ↦ cmpt 5201 ◡ccnv 5653 dom cdm 5654 “ cima 5657 ∘ ccom 5658 Fun wfun 6524 ⟶wf 6526 –1-1→wf1 6527 –1-1-onto→wf1o 6529 ‘cfv 6530 (class class class)co 7403 0cc0 11127 ..^cfzo 13669 ♯chash 14346 Word cword 14529 iEdgciedg 28922 Edgcedg 28972 USPGraphcuspgr 29073 Walkscwlks 29522 Trailsctrls 29616 GraphIso cgrim 47836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-n0 12500 df-xnn0 12573 df-z 12587 df-uz 12851 df-fz 13523 df-fzo 13670 df-hash 14347 df-word 14530 df-edg 28973 df-uhgr 28983 df-upgr 29007 df-uspgr 29075 df-wlks 29525 df-trls 29618 df-grim 47839 |
| This theorem is referenced by: upgrimpths 47870 upgrimspths 47871 |
| Copyright terms: Public domain | W3C validator |