| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upgrimtrls | Structured version Visualization version GIF version | ||
| Description: Graph isomorphisms between simple pseudographs map trails onto trails. (Contributed by AV, 29-Oct-2025.) |
| Ref | Expression |
|---|---|
| upgrimwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| upgrimwlk.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| upgrimwlk.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| upgrimwlk.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| upgrimwlk.n | ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| upgrimwlk.e | ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| upgrimtrls.t | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| Ref | Expression |
|---|---|
| upgrimtrls | ⊢ (𝜑 → 𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | upgrimwlk.j | . . 3 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 3 | upgrimwlk.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USPGraph) | |
| 4 | upgrimwlk.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USPGraph) | |
| 5 | upgrimwlk.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) | |
| 6 | upgrimwlk.e | . . 3 ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) | |
| 7 | upgrimtrls.t | . . . 4 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
| 8 | trliswlk 29676 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | upgrimwlk 47895 | . 2 ⊢ (𝜑 → 𝐸(Walks‘𝐻)(𝑁 ∘ 𝑃)) |
| 11 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝐻 ∈ USPGraph) |
| 12 | 2 | uspgrf1oedg 29153 | . . . . . . . 8 ⊢ (𝐻 ∈ USPGraph → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 14 | 1, 2, 3, 4, 5, 6, 7 | upgrimtrlslem1 47897 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ (Edg‘𝐻)) |
| 15 | f1ocnvdm 7242 | . . . . . . 7 ⊢ ((𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻) ∧ (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ (Edg‘𝐻)) → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽) | |
| 16 | 13, 14, 15 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽) |
| 17 | 16 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ dom 𝐹(◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽) |
| 18 | 1, 2, 3, 4, 5, 6, 7 | upgrimtrlslem2 47898 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → ((◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑦)))) → 𝑥 = 𝑦)) |
| 19 | 18 | ralrimivva 3178 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹((◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑦)))) → 𝑥 = 𝑦)) |
| 20 | 2fveq3 6845 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦))) | |
| 21 | 20 | imaeq2d 6020 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑁 “ (𝐼‘(𝐹‘𝑥))) = (𝑁 “ (𝐼‘(𝐹‘𝑦)))) |
| 22 | 21 | fveq2d 6844 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑦))))) |
| 23 | 6, 22 | f1mpt 7218 | . . . . 5 ⊢ (𝐸:dom 𝐹–1-1→dom 𝐽 ↔ (∀𝑥 ∈ dom 𝐹(◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹((◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑦)))) → 𝑥 = 𝑦))) |
| 24 | 17, 19, 23 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝐸:dom 𝐹–1-1→dom 𝐽) |
| 25 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → 𝐸 = 𝐸) | |
| 26 | 1 | wlkf 29595 | . . . . . . . . 9 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 27 | 7, 8, 26 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| 28 | 1, 2, 3, 4, 5, 6, 27 | upgrimwlklem1 47890 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐸) = (♯‘𝐹)) |
| 29 | 28 | oveq2d 7385 | . . . . . 6 ⊢ (𝜑 → (0..^(♯‘𝐸)) = (0..^(♯‘𝐹))) |
| 30 | wrddm 14462 | . . . . . . . 8 ⊢ (𝐹 ∈ Word dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹))) | |
| 31 | 8, 26, 30 | 3syl 18 | . . . . . . 7 ⊢ (𝐹(Trails‘𝐺)𝑃 → dom 𝐹 = (0..^(♯‘𝐹))) |
| 32 | 7, 31 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom 𝐹 = (0..^(♯‘𝐹))) |
| 33 | 29, 32 | eqtr4d 2767 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐸)) = dom 𝐹) |
| 34 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → dom 𝐽 = dom 𝐽) | |
| 35 | 25, 33, 34 | f1eq123d 6774 | . . . 4 ⊢ (𝜑 → (𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽 ↔ 𝐸:dom 𝐹–1-1→dom 𝐽)) |
| 36 | 24, 35 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽) |
| 37 | df-f1 6504 | . . . 4 ⊢ (𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽 ↔ (𝐸:(0..^(♯‘𝐸))⟶dom 𝐽 ∧ Fun ◡𝐸)) | |
| 38 | 37 | simprbi 496 | . . 3 ⊢ (𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽 → Fun ◡𝐸) |
| 39 | 36, 38 | syl 17 | . 2 ⊢ (𝜑 → Fun ◡𝐸) |
| 40 | istrl 29675 | . 2 ⊢ (𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃) ↔ (𝐸(Walks‘𝐻)(𝑁 ∘ 𝑃) ∧ Fun ◡𝐸)) | |
| 41 | 10, 39, 40 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5102 ↦ cmpt 5183 ◡ccnv 5630 dom cdm 5631 “ cima 5634 ∘ ccom 5635 Fun wfun 6493 ⟶wf 6495 –1-1→wf1 6496 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 0cc0 11044 ..^cfzo 13591 ♯chash 14271 Word cword 14454 iEdgciedg 28977 Edgcedg 29027 USPGraphcuspgr 29128 Walkscwlks 29577 Trailsctrls 29669 GraphIso cgrim 47868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-edg 29028 df-uhgr 29038 df-upgr 29062 df-uspgr 29130 df-wlks 29580 df-trls 29671 df-grim 47871 |
| This theorem is referenced by: upgrimpths 47902 upgrimspths 47903 |
| Copyright terms: Public domain | W3C validator |