Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrimtrls Structured version   Visualization version   GIF version

Theorem upgrimtrls 47867
Description: Graph isomorphisms between simple pseudographs map trails onto trails. (Contributed by AV, 29-Oct-2025.)
Hypotheses
Ref Expression
upgrimwlk.i 𝐼 = (iEdg‘𝐺)
upgrimwlk.j 𝐽 = (iEdg‘𝐻)
upgrimwlk.g (𝜑𝐺 ∈ USPGraph)
upgrimwlk.h (𝜑𝐻 ∈ USPGraph)
upgrimwlk.n (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
upgrimwlk.e 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
upgrimtrls.t (𝜑𝐹(Trails‘𝐺)𝑃)
Assertion
Ref Expression
upgrimtrls (𝜑𝐸(Trails‘𝐻)(𝑁𝑃))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼   𝑥,𝐽   𝑥,𝑃   𝜑,𝑥   𝑥,𝐸   𝑥,𝑁
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem upgrimtrls
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 upgrimwlk.i . . 3 𝐼 = (iEdg‘𝐺)
2 upgrimwlk.j . . 3 𝐽 = (iEdg‘𝐻)
3 upgrimwlk.g . . 3 (𝜑𝐺 ∈ USPGraph)
4 upgrimwlk.h . . 3 (𝜑𝐻 ∈ USPGraph)
5 upgrimwlk.n . . 3 (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
6 upgrimwlk.e . . 3 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
7 upgrimtrls.t . . . 4 (𝜑𝐹(Trails‘𝐺)𝑃)
8 trliswlk 29623 . . . 4 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
97, 8syl 17 . . 3 (𝜑𝐹(Walks‘𝐺)𝑃)
101, 2, 3, 4, 5, 6, 9upgrimwlk 47863 . 2 (𝜑𝐸(Walks‘𝐻)(𝑁𝑃))
114adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐹) → 𝐻 ∈ USPGraph)
122uspgrf1oedg 29098 . . . . . . . 8 (𝐻 ∈ USPGraph → 𝐽:dom 𝐽1-1-onto→(Edg‘𝐻))
1311, 12syl 17 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝐹) → 𝐽:dom 𝐽1-1-onto→(Edg‘𝐻))
141, 2, 3, 4, 5, 6, 7upgrimtrlslem1 47865 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹𝑥))) ∈ (Edg‘𝐻))
15 f1ocnvdm 7277 . . . . . . 7 ((𝐽:dom 𝐽1-1-onto→(Edg‘𝐻) ∧ (𝑁 “ (𝐼‘(𝐹𝑥))) ∈ (Edg‘𝐻)) → (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) ∈ dom 𝐽)
1613, 14, 15syl2anc 584 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐹) → (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) ∈ dom 𝐽)
1716ralrimiva 3132 . . . . 5 (𝜑 → ∀𝑥 ∈ dom 𝐹(𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) ∈ dom 𝐽)
181, 2, 3, 4, 5, 6, 7upgrimtrlslem2 47866 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑦)))) → 𝑥 = 𝑦))
1918ralrimivva 3187 . . . . 5 (𝜑 → ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹((𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑦)))) → 𝑥 = 𝑦))
20 2fveq3 6880 . . . . . . . 8 (𝑥 = 𝑦 → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)))
2120imaeq2d 6047 . . . . . . 7 (𝑥 = 𝑦 → (𝑁 “ (𝐼‘(𝐹𝑥))) = (𝑁 “ (𝐼‘(𝐹𝑦))))
2221fveq2d 6879 . . . . . 6 (𝑥 = 𝑦 → (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑦)))))
236, 22f1mpt 7253 . . . . 5 (𝐸:dom 𝐹1-1→dom 𝐽 ↔ (∀𝑥 ∈ dom 𝐹(𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) ∈ dom 𝐽 ∧ ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹((𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑦)))) → 𝑥 = 𝑦)))
2417, 19, 23sylanbrc 583 . . . 4 (𝜑𝐸:dom 𝐹1-1→dom 𝐽)
25 eqidd 2736 . . . . 5 (𝜑𝐸 = 𝐸)
261wlkf 29540 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
277, 8, 263syl 18 . . . . . . . 8 (𝜑𝐹 ∈ Word dom 𝐼)
281, 2, 3, 4, 5, 6, 27upgrimwlklem1 47858 . . . . . . 7 (𝜑 → (♯‘𝐸) = (♯‘𝐹))
2928oveq2d 7419 . . . . . 6 (𝜑 → (0..^(♯‘𝐸)) = (0..^(♯‘𝐹)))
30 wrddm 14537 . . . . . . . 8 (𝐹 ∈ Word dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹)))
318, 26, 303syl 18 . . . . . . 7 (𝐹(Trails‘𝐺)𝑃 → dom 𝐹 = (0..^(♯‘𝐹)))
327, 31syl 17 . . . . . 6 (𝜑 → dom 𝐹 = (0..^(♯‘𝐹)))
3329, 32eqtr4d 2773 . . . . 5 (𝜑 → (0..^(♯‘𝐸)) = dom 𝐹)
34 eqidd 2736 . . . . 5 (𝜑 → dom 𝐽 = dom 𝐽)
3525, 33, 34f1eq123d 6809 . . . 4 (𝜑 → (𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽𝐸:dom 𝐹1-1→dom 𝐽))
3624, 35mpbird 257 . . 3 (𝜑𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽)
37 df-f1 6535 . . . 4 (𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽 ↔ (𝐸:(0..^(♯‘𝐸))⟶dom 𝐽 ∧ Fun 𝐸))
3837simprbi 496 . . 3 (𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽 → Fun 𝐸)
3936, 38syl 17 . 2 (𝜑 → Fun 𝐸)
40 istrl 29622 . 2 (𝐸(Trails‘𝐻)(𝑁𝑃) ↔ (𝐸(Walks‘𝐻)(𝑁𝑃) ∧ Fun 𝐸))
4110, 39, 40sylanbrc 583 1 (𝜑𝐸(Trails‘𝐻)(𝑁𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051   class class class wbr 5119  cmpt 5201  ccnv 5653  dom cdm 5654  cima 5657  ccom 5658  Fun wfun 6524  wf 6526  1-1wf1 6527  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  0cc0 11127  ..^cfzo 13669  chash 14346  Word cword 14529  iEdgciedg 28922  Edgcedg 28972  USPGraphcuspgr 29073  Walkscwlks 29522  Trailsctrls 29616   GraphIso cgrim 47836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-n0 12500  df-xnn0 12573  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670  df-hash 14347  df-word 14530  df-edg 28973  df-uhgr 28983  df-upgr 29007  df-uspgr 29075  df-wlks 29525  df-trls 29618  df-grim 47839
This theorem is referenced by:  upgrimpths  47870  upgrimspths  47871
  Copyright terms: Public domain W3C validator