Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrimtrls Structured version   Visualization version   GIF version

Theorem upgrimtrls 48005
Description: Graph isomorphisms between simple pseudographs map trails onto trails. (Contributed by AV, 29-Oct-2025.)
Hypotheses
Ref Expression
upgrimwlk.i 𝐼 = (iEdg‘𝐺)
upgrimwlk.j 𝐽 = (iEdg‘𝐻)
upgrimwlk.g (𝜑𝐺 ∈ USPGraph)
upgrimwlk.h (𝜑𝐻 ∈ USPGraph)
upgrimwlk.n (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
upgrimwlk.e 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
upgrimtrls.t (𝜑𝐹(Trails‘𝐺)𝑃)
Assertion
Ref Expression
upgrimtrls (𝜑𝐸(Trails‘𝐻)(𝑁𝑃))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼   𝑥,𝐽   𝑥,𝑃   𝜑,𝑥   𝑥,𝐸   𝑥,𝑁
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem upgrimtrls
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 upgrimwlk.i . . 3 𝐼 = (iEdg‘𝐺)
2 upgrimwlk.j . . 3 𝐽 = (iEdg‘𝐻)
3 upgrimwlk.g . . 3 (𝜑𝐺 ∈ USPGraph)
4 upgrimwlk.h . . 3 (𝜑𝐻 ∈ USPGraph)
5 upgrimwlk.n . . 3 (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
6 upgrimwlk.e . . 3 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
7 upgrimtrls.t . . . 4 (𝜑𝐹(Trails‘𝐺)𝑃)
8 trliswlk 29674 . . . 4 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
97, 8syl 17 . . 3 (𝜑𝐹(Walks‘𝐺)𝑃)
101, 2, 3, 4, 5, 6, 9upgrimwlk 48001 . 2 (𝜑𝐸(Walks‘𝐻)(𝑁𝑃))
114adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐹) → 𝐻 ∈ USPGraph)
122uspgrf1oedg 29151 . . . . . . . 8 (𝐻 ∈ USPGraph → 𝐽:dom 𝐽1-1-onto→(Edg‘𝐻))
1311, 12syl 17 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝐹) → 𝐽:dom 𝐽1-1-onto→(Edg‘𝐻))
141, 2, 3, 4, 5, 6, 7upgrimtrlslem1 48003 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹𝑥))) ∈ (Edg‘𝐻))
15 f1ocnvdm 7219 . . . . . . 7 ((𝐽:dom 𝐽1-1-onto→(Edg‘𝐻) ∧ (𝑁 “ (𝐼‘(𝐹𝑥))) ∈ (Edg‘𝐻)) → (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) ∈ dom 𝐽)
1613, 14, 15syl2anc 584 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐹) → (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) ∈ dom 𝐽)
1716ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑥 ∈ dom 𝐹(𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) ∈ dom 𝐽)
181, 2, 3, 4, 5, 6, 7upgrimtrlslem2 48004 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑦)))) → 𝑥 = 𝑦))
1918ralrimivva 3175 . . . . 5 (𝜑 → ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹((𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑦)))) → 𝑥 = 𝑦))
20 2fveq3 6827 . . . . . . . 8 (𝑥 = 𝑦 → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)))
2120imaeq2d 6008 . . . . . . 7 (𝑥 = 𝑦 → (𝑁 “ (𝐼‘(𝐹𝑥))) = (𝑁 “ (𝐼‘(𝐹𝑦))))
2221fveq2d 6826 . . . . . 6 (𝑥 = 𝑦 → (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑦)))))
236, 22f1mpt 7195 . . . . 5 (𝐸:dom 𝐹1-1→dom 𝐽 ↔ (∀𝑥 ∈ dom 𝐹(𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) ∈ dom 𝐽 ∧ ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹((𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑦)))) → 𝑥 = 𝑦)))
2417, 19, 23sylanbrc 583 . . . 4 (𝜑𝐸:dom 𝐹1-1→dom 𝐽)
25 eqidd 2732 . . . . 5 (𝜑𝐸 = 𝐸)
261wlkf 29593 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
277, 8, 263syl 18 . . . . . . . 8 (𝜑𝐹 ∈ Word dom 𝐼)
281, 2, 3, 4, 5, 6, 27upgrimwlklem1 47996 . . . . . . 7 (𝜑 → (♯‘𝐸) = (♯‘𝐹))
2928oveq2d 7362 . . . . . 6 (𝜑 → (0..^(♯‘𝐸)) = (0..^(♯‘𝐹)))
30 wrddm 14428 . . . . . . . 8 (𝐹 ∈ Word dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹)))
318, 26, 303syl 18 . . . . . . 7 (𝐹(Trails‘𝐺)𝑃 → dom 𝐹 = (0..^(♯‘𝐹)))
327, 31syl 17 . . . . . 6 (𝜑 → dom 𝐹 = (0..^(♯‘𝐹)))
3329, 32eqtr4d 2769 . . . . 5 (𝜑 → (0..^(♯‘𝐸)) = dom 𝐹)
34 eqidd 2732 . . . . 5 (𝜑 → dom 𝐽 = dom 𝐽)
3525, 33, 34f1eq123d 6755 . . . 4 (𝜑 → (𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽𝐸:dom 𝐹1-1→dom 𝐽))
3624, 35mpbird 257 . . 3 (𝜑𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽)
37 df-f1 6486 . . . 4 (𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽 ↔ (𝐸:(0..^(♯‘𝐸))⟶dom 𝐽 ∧ Fun 𝐸))
3837simprbi 496 . . 3 (𝐸:(0..^(♯‘𝐸))–1-1→dom 𝐽 → Fun 𝐸)
3936, 38syl 17 . 2 (𝜑 → Fun 𝐸)
40 istrl 29673 . 2 (𝐸(Trails‘𝐻)(𝑁𝑃) ↔ (𝐸(Walks‘𝐻)(𝑁𝑃) ∧ Fun 𝐸))
4110, 39, 40sylanbrc 583 1 (𝜑𝐸(Trails‘𝐻)(𝑁𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5089  cmpt 5170  ccnv 5613  dom cdm 5614  cima 5617  ccom 5618  Fun wfun 6475  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  0cc0 11006  ..^cfzo 13554  chash 14237  Word cword 14420  iEdgciedg 28975  Edgcedg 29025  USPGraphcuspgr 29126  Walkscwlks 29575  Trailsctrls 29667   GraphIso cgrim 47974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-edg 29026  df-uhgr 29036  df-upgr 29060  df-uspgr 29128  df-wlks 29578  df-trls 29669  df-grim 47977
This theorem is referenced by:  upgrimpths  48008  upgrimspths  48009
  Copyright terms: Public domain W3C validator