Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrimpths Structured version   Visualization version   GIF version

Theorem upgrimpths 48008
Description: Graph isomorphisms between simple pseudographs map paths onto paths. (Contributed by AV, 31-Oct-2025.)
Hypotheses
Ref Expression
upgrimwlk.i 𝐼 = (iEdg‘𝐺)
upgrimwlk.j 𝐽 = (iEdg‘𝐻)
upgrimwlk.g (𝜑𝐺 ∈ USPGraph)
upgrimwlk.h (𝜑𝐻 ∈ USPGraph)
upgrimwlk.n (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
upgrimwlk.e 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
upgrimpths.p (𝜑𝐹(Paths‘𝐺)𝑃)
Assertion
Ref Expression
upgrimpths (𝜑𝐸(Paths‘𝐻)(𝑁𝑃))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼   𝑥,𝐽   𝑥,𝑃   𝜑,𝑥   𝑥,𝐸   𝑥,𝑁
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem upgrimpths
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 upgrimwlk.i . . . 4 𝐼 = (iEdg‘𝐺)
2 upgrimwlk.j . . . 4 𝐽 = (iEdg‘𝐻)
3 upgrimwlk.g . . . 4 (𝜑𝐺 ∈ USPGraph)
4 upgrimwlk.h . . . 4 (𝜑𝐻 ∈ USPGraph)
5 upgrimwlk.n . . . 4 (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
6 upgrimwlk.e . . . 4 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
7 upgrimpths.p . . . . 5 (𝜑𝐹(Paths‘𝐺)𝑃)
8 pthistrl 29701 . . . . 5 (𝐹(Paths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
97, 8syl 17 . . . 4 (𝜑𝐹(Trails‘𝐺)𝑃)
101, 2, 3, 4, 5, 6, 9upgrimtrls 48005 . . 3 (𝜑𝐸(Trails‘𝐻)(𝑁𝑃))
111, 2, 3, 4, 5, 6, 7upgrimpthslem1 48006 . . 3 (𝜑 → Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐹))))
12 pthiswlk 29703 . . . . . . . . . . . 12 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
131wlkf 29593 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
147, 12, 133syl 18 . . . . . . . . . . 11 (𝜑𝐹 ∈ Word dom 𝐼)
15 eqid 2731 . . . . . . . . . . . . 13 (Vtx‘𝐺) = (Vtx‘𝐺)
1615wlkp 29595 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
177, 12, 163syl 18 . . . . . . . . . . 11 (𝜑𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
181, 2, 3, 4, 5, 6, 14, 17upgrimwlklem4 47999 . . . . . . . . . 10 (𝜑 → (𝑁𝑃):(0...(♯‘𝐸))⟶(Vtx‘𝐻))
1918ffnd 6652 . . . . . . . . 9 (𝜑 → (𝑁𝑃) Fn (0...(♯‘𝐸)))
201, 2, 3, 4, 5, 6, 14upgrimwlklem1 47996 . . . . . . . . . . 11 (𝜑 → (♯‘𝐸) = (♯‘𝐹))
21 wlkcl 29594 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
227, 12, 213syl 18 . . . . . . . . . . 11 (𝜑 → (♯‘𝐹) ∈ ℕ0)
2320, 22eqeltrd 2831 . . . . . . . . . 10 (𝜑 → (♯‘𝐸) ∈ ℕ0)
24 0elfz 13524 . . . . . . . . . 10 ((♯‘𝐸) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐸)))
2523, 24syl 17 . . . . . . . . 9 (𝜑 → 0 ∈ (0...(♯‘𝐸)))
26 nn0fz0 13525 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹)))
2722, 26sylib 218 . . . . . . . . . 10 (𝜑 → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
2820oveq2d 7362 . . . . . . . . . 10 (𝜑 → (0...(♯‘𝐸)) = (0...(♯‘𝐹)))
2927, 28eleqtrrd 2834 . . . . . . . . 9 (𝜑 → (♯‘𝐹) ∈ (0...(♯‘𝐸)))
30 fnimapr 6905 . . . . . . . . 9 (((𝑁𝑃) Fn (0...(♯‘𝐸)) ∧ 0 ∈ (0...(♯‘𝐸)) ∧ (♯‘𝐹) ∈ (0...(♯‘𝐸))) → ((𝑁𝑃) “ {0, (♯‘𝐹)}) = {((𝑁𝑃)‘0), ((𝑁𝑃)‘(♯‘𝐹))})
3119, 25, 29, 30syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝑁𝑃) “ {0, (♯‘𝐹)}) = {((𝑁𝑃)‘0), ((𝑁𝑃)‘(♯‘𝐹))})
3231eleq2d 2817 . . . . . . 7 (𝜑 → (𝑥 ∈ ((𝑁𝑃) “ {0, (♯‘𝐹)}) ↔ 𝑥 ∈ {((𝑁𝑃)‘0), ((𝑁𝑃)‘(♯‘𝐹))}))
33 vex 3440 . . . . . . . 8 𝑥 ∈ V
3433elpr 4598 . . . . . . 7 (𝑥 ∈ {((𝑁𝑃)‘0), ((𝑁𝑃)‘(♯‘𝐹))} ↔ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹))))
3532, 34bitrdi 287 . . . . . 6 (𝜑 → (𝑥 ∈ ((𝑁𝑃) “ {0, (♯‘𝐹)}) ↔ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹)))))
361, 2, 3, 4, 5, 6, 7upgrimpthslem2 48007 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (1..^(♯‘𝐹))) → (¬ ((𝑁𝑃)‘𝑦) = ((𝑁𝑃)‘0) ∧ ¬ ((𝑁𝑃)‘𝑦) = ((𝑁𝑃)‘(♯‘𝐹))))
3736simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (1..^(♯‘𝐹))) → ¬ ((𝑁𝑃)‘𝑦) = ((𝑁𝑃)‘0))
38 eqeq2 2743 . . . . . . . . . . . . . 14 (𝑥 = ((𝑁𝑃)‘0) → (((𝑁𝑃)‘𝑦) = 𝑥 ↔ ((𝑁𝑃)‘𝑦) = ((𝑁𝑃)‘0)))
3938notbid 318 . . . . . . . . . . . . 13 (𝑥 = ((𝑁𝑃)‘0) → (¬ ((𝑁𝑃)‘𝑦) = 𝑥 ↔ ¬ ((𝑁𝑃)‘𝑦) = ((𝑁𝑃)‘0)))
4037, 39syl5ibrcom 247 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1..^(♯‘𝐹))) → (𝑥 = ((𝑁𝑃)‘0) → ¬ ((𝑁𝑃)‘𝑦) = 𝑥))
4136simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (1..^(♯‘𝐹))) → ¬ ((𝑁𝑃)‘𝑦) = ((𝑁𝑃)‘(♯‘𝐹)))
42 eqeq2 2743 . . . . . . . . . . . . . 14 (𝑥 = ((𝑁𝑃)‘(♯‘𝐹)) → (((𝑁𝑃)‘𝑦) = 𝑥 ↔ ((𝑁𝑃)‘𝑦) = ((𝑁𝑃)‘(♯‘𝐹))))
4342notbid 318 . . . . . . . . . . . . 13 (𝑥 = ((𝑁𝑃)‘(♯‘𝐹)) → (¬ ((𝑁𝑃)‘𝑦) = 𝑥 ↔ ¬ ((𝑁𝑃)‘𝑦) = ((𝑁𝑃)‘(♯‘𝐹))))
4441, 43syl5ibrcom 247 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1..^(♯‘𝐹))) → (𝑥 = ((𝑁𝑃)‘(♯‘𝐹)) → ¬ ((𝑁𝑃)‘𝑦) = 𝑥))
4540, 44jaod 859 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (1..^(♯‘𝐹))) → ((𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹))) → ¬ ((𝑁𝑃)‘𝑦) = 𝑥))
4645impancom 451 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹)))) → (𝑦 ∈ (1..^(♯‘𝐹)) → ¬ ((𝑁𝑃)‘𝑦) = 𝑥))
4746imp 406 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹)))) ∧ 𝑦 ∈ (1..^(♯‘𝐹))) → ¬ ((𝑁𝑃)‘𝑦) = 𝑥)
4847nrexdv 3127 . . . . . . . 8 ((𝜑 ∧ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹)))) → ¬ ∃𝑦 ∈ (1..^(♯‘𝐹))((𝑁𝑃)‘𝑦) = 𝑥)
4920eqcomd 2737 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝐹) = (♯‘𝐸))
5049oveq2d 7362 . . . . . . . . . . . . 13 (𝜑 → (0...(♯‘𝐹)) = (0...(♯‘𝐸)))
5150feq2d 6635 . . . . . . . . . . . 12 (𝜑 → ((𝑁𝑃):(0...(♯‘𝐹))⟶(Vtx‘𝐻) ↔ (𝑁𝑃):(0...(♯‘𝐸))⟶(Vtx‘𝐻)))
5218, 51mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝑁𝑃):(0...(♯‘𝐹))⟶(Vtx‘𝐻))
5352ffnd 6652 . . . . . . . . . 10 (𝜑 → (𝑁𝑃) Fn (0...(♯‘𝐹)))
5453adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹)))) → (𝑁𝑃) Fn (0...(♯‘𝐹)))
55 fzo0ss1 13589 . . . . . . . . . . 11 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
56 fzossfz 13578 . . . . . . . . . . 11 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
5755, 56sstri 3939 . . . . . . . . . 10 (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
5857a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹)))) → (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
5954, 58fvelimabd 6895 . . . . . . . 8 ((𝜑 ∧ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹)))) → (𝑥 ∈ ((𝑁𝑃) “ (1..^(♯‘𝐹))) ↔ ∃𝑦 ∈ (1..^(♯‘𝐹))((𝑁𝑃)‘𝑦) = 𝑥))
6048, 59mtbird 325 . . . . . . 7 ((𝜑 ∧ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹)))) → ¬ 𝑥 ∈ ((𝑁𝑃) “ (1..^(♯‘𝐹))))
6160ex 412 . . . . . 6 (𝜑 → ((𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹))) → ¬ 𝑥 ∈ ((𝑁𝑃) “ (1..^(♯‘𝐹)))))
6235, 61sylbid 240 . . . . 5 (𝜑 → (𝑥 ∈ ((𝑁𝑃) “ {0, (♯‘𝐹)}) → ¬ 𝑥 ∈ ((𝑁𝑃) “ (1..^(♯‘𝐹)))))
6362ralrimiv 3123 . . . 4 (𝜑 → ∀𝑥 ∈ ((𝑁𝑃) “ {0, (♯‘𝐹)}) ¬ 𝑥 ∈ ((𝑁𝑃) “ (1..^(♯‘𝐹))))
64 disj 4397 . . . 4 ((((𝑁𝑃) “ {0, (♯‘𝐹)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐹)))) = ∅ ↔ ∀𝑥 ∈ ((𝑁𝑃) “ {0, (♯‘𝐹)}) ¬ 𝑥 ∈ ((𝑁𝑃) “ (1..^(♯‘𝐹))))
6563, 64sylibr 234 . . 3 (𝜑 → (((𝑁𝑃) “ {0, (♯‘𝐹)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐹)))) = ∅)
6620oveq2d 7362 . . . . . . 7 (𝜑 → (1..^(♯‘𝐸)) = (1..^(♯‘𝐹)))
6766reseq2d 5927 . . . . . 6 (𝜑 → ((𝑁𝑃) ↾ (1..^(♯‘𝐸))) = ((𝑁𝑃) ↾ (1..^(♯‘𝐹))))
6867cnveqd 5814 . . . . 5 (𝜑((𝑁𝑃) ↾ (1..^(♯‘𝐸))) = ((𝑁𝑃) ↾ (1..^(♯‘𝐹))))
6968funeqd 6503 . . . 4 (𝜑 → (Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐸))) ↔ Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐹)))))
70 preq2 4684 . . . . . . . 8 ((♯‘𝐸) = (♯‘𝐹) → {0, (♯‘𝐸)} = {0, (♯‘𝐹)})
7170imaeq2d 6008 . . . . . . 7 ((♯‘𝐸) = (♯‘𝐹) → ((𝑁𝑃) “ {0, (♯‘𝐸)}) = ((𝑁𝑃) “ {0, (♯‘𝐹)}))
72 oveq2 7354 . . . . . . . 8 ((♯‘𝐸) = (♯‘𝐹) → (1..^(♯‘𝐸)) = (1..^(♯‘𝐹)))
7372imaeq2d 6008 . . . . . . 7 ((♯‘𝐸) = (♯‘𝐹) → ((𝑁𝑃) “ (1..^(♯‘𝐸))) = ((𝑁𝑃) “ (1..^(♯‘𝐹))))
7471, 73ineq12d 4168 . . . . . 6 ((♯‘𝐸) = (♯‘𝐹) → (((𝑁𝑃) “ {0, (♯‘𝐸)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐸)))) = (((𝑁𝑃) “ {0, (♯‘𝐹)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐹)))))
7574eqeq1d 2733 . . . . 5 ((♯‘𝐸) = (♯‘𝐹) → ((((𝑁𝑃) “ {0, (♯‘𝐸)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐸)))) = ∅ ↔ (((𝑁𝑃) “ {0, (♯‘𝐹)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐹)))) = ∅))
7620, 75syl 17 . . . 4 (𝜑 → ((((𝑁𝑃) “ {0, (♯‘𝐸)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐸)))) = ∅ ↔ (((𝑁𝑃) “ {0, (♯‘𝐹)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐹)))) = ∅))
7769, 763anbi23d 1441 . . 3 (𝜑 → ((𝐸(Trails‘𝐻)(𝑁𝑃) ∧ Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐸))) ∧ (((𝑁𝑃) “ {0, (♯‘𝐸)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐸)))) = ∅) ↔ (𝐸(Trails‘𝐻)(𝑁𝑃) ∧ Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐹))) ∧ (((𝑁𝑃) “ {0, (♯‘𝐹)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐹)))) = ∅)))
7810, 11, 65, 77mpbir3and 1343 . 2 (𝜑 → (𝐸(Trails‘𝐻)(𝑁𝑃) ∧ Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐸))) ∧ (((𝑁𝑃) “ {0, (♯‘𝐸)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐸)))) = ∅))
79 ispth 29699 . 2 (𝐸(Paths‘𝐻)(𝑁𝑃) ↔ (𝐸(Trails‘𝐻)(𝑁𝑃) ∧ Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐸))) ∧ (((𝑁𝑃) “ {0, (♯‘𝐸)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐸)))) = ∅))
8078, 79sylibr 234 1 (𝜑𝐸(Paths‘𝐻)(𝑁𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cin 3896  wss 3897  c0 4280  {cpr 4575   class class class wbr 5089  cmpt 5170  ccnv 5613  dom cdm 5614  cres 5616  cima 5617  ccom 5618  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007  0cn0 12381  ...cfz 13407  ..^cfzo 13554  chash 14237  Word cword 14420  Vtxcvtx 28974  iEdgciedg 28975  USPGraphcuspgr 29126  Walkscwlks 29575  Trailsctrls 29667  Pathscpths 29688   GraphIso cgrim 47974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-edg 29026  df-uhgr 29036  df-upgr 29060  df-uspgr 29128  df-wlks 29578  df-trls 29669  df-pths 29692  df-grim 47977
This theorem is referenced by:  upgrimcycls  48010
  Copyright terms: Public domain W3C validator