| Step | Hyp | Ref
| Expression |
| 1 | | upgrimwlk.i |
. . . 4
⊢ 𝐼 = (iEdg‘𝐺) |
| 2 | | upgrimwlk.j |
. . . 4
⊢ 𝐽 = (iEdg‘𝐻) |
| 3 | | upgrimwlk.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| 4 | | upgrimwlk.h |
. . . 4
⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| 5 | | upgrimwlk.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| 6 | | upgrimwlk.e |
. . . 4
⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| 7 | | upgrimpths.p |
. . . . 5
⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| 8 | | pthistrl 29651 |
. . . . 5
⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) |
| 9 | 7, 8 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | upgrimtrls 47867 |
. . 3
⊢ (𝜑 → 𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃)) |
| 11 | 1, 2, 3, 4, 5, 6, 7 | upgrimpthslem1 47868 |
. . 3
⊢ (𝜑 → Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹)))) |
| 12 | | pthiswlk 29653 |
. . . . . . . . . . . 12
⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| 13 | 1 | wlkf 29540 |
. . . . . . . . . . . 12
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 14 | 7, 12, 13 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| 15 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 16 | 15 | wlkp 29542 |
. . . . . . . . . . . 12
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 17 | 7, 12, 16 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 18 | 1, 2, 3, 4, 5, 6, 14, 17 | upgrimwlklem4 47861 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 ∘ 𝑃):(0...(♯‘𝐸))⟶(Vtx‘𝐻)) |
| 19 | 18 | ffnd 6706 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 ∘ 𝑃) Fn (0...(♯‘𝐸))) |
| 20 | 1, 2, 3, 4, 5, 6, 14 | upgrimwlklem1 47858 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐸) = (♯‘𝐹)) |
| 21 | | wlkcl 29541 |
. . . . . . . . . . . 12
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈
ℕ0) |
| 22 | 7, 12, 21 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐹) ∈
ℕ0) |
| 23 | 20, 22 | eqeltrd 2834 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐸) ∈
ℕ0) |
| 24 | | 0elfz 13639 |
. . . . . . . . . 10
⊢
((♯‘𝐸)
∈ ℕ0 → 0 ∈ (0...(♯‘𝐸))) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
(0...(♯‘𝐸))) |
| 26 | | nn0fz0 13640 |
. . . . . . . . . . 11
⊢
((♯‘𝐹)
∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹))) |
| 27 | 22, 26 | sylib 218 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐹) ∈
(0...(♯‘𝐹))) |
| 28 | 20 | oveq2d 7419 |
. . . . . . . . . 10
⊢ (𝜑 → (0...(♯‘𝐸)) = (0...(♯‘𝐹))) |
| 29 | 27, 28 | eleqtrrd 2837 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝐹) ∈
(0...(♯‘𝐸))) |
| 30 | | fnimapr 6961 |
. . . . . . . . 9
⊢ (((𝑁 ∘ 𝑃) Fn (0...(♯‘𝐸)) ∧ 0 ∈ (0...(♯‘𝐸)) ∧ (♯‘𝐹) ∈
(0...(♯‘𝐸)))
→ ((𝑁 ∘ 𝑃) “ {0,
(♯‘𝐹)}) =
{((𝑁 ∘ 𝑃)‘0), ((𝑁 ∘ 𝑃)‘(♯‘𝐹))}) |
| 31 | 19, 25, 29, 30 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 ∘ 𝑃) “ {0, (♯‘𝐹)}) = {((𝑁 ∘ 𝑃)‘0), ((𝑁 ∘ 𝑃)‘(♯‘𝐹))}) |
| 32 | 31 | eleq2d 2820 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ((𝑁 ∘ 𝑃) “ {0, (♯‘𝐹)}) ↔ 𝑥 ∈ {((𝑁 ∘ 𝑃)‘0), ((𝑁 ∘ 𝑃)‘(♯‘𝐹))})) |
| 33 | | vex 3463 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 34 | 33 | elpr 4626 |
. . . . . . 7
⊢ (𝑥 ∈ {((𝑁 ∘ 𝑃)‘0), ((𝑁 ∘ 𝑃)‘(♯‘𝐹))} ↔ (𝑥 = ((𝑁 ∘ 𝑃)‘0) ∨ 𝑥 = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)))) |
| 35 | 32, 34 | bitrdi 287 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ((𝑁 ∘ 𝑃) “ {0, (♯‘𝐹)}) ↔ (𝑥 = ((𝑁 ∘ 𝑃)‘0) ∨ 𝑥 = ((𝑁 ∘ 𝑃)‘(♯‘𝐹))))) |
| 36 | 1, 2, 3, 4, 5, 6, 7 | upgrimpthslem2 47869 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (1..^(♯‘𝐹))) → (¬ ((𝑁 ∘ 𝑃)‘𝑦) = ((𝑁 ∘ 𝑃)‘0) ∧ ¬ ((𝑁 ∘ 𝑃)‘𝑦) = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)))) |
| 37 | 36 | simpld 494 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (1..^(♯‘𝐹))) → ¬ ((𝑁 ∘ 𝑃)‘𝑦) = ((𝑁 ∘ 𝑃)‘0)) |
| 38 | | eqeq2 2747 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ((𝑁 ∘ 𝑃)‘0) → (((𝑁 ∘ 𝑃)‘𝑦) = 𝑥 ↔ ((𝑁 ∘ 𝑃)‘𝑦) = ((𝑁 ∘ 𝑃)‘0))) |
| 39 | 38 | notbid 318 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ((𝑁 ∘ 𝑃)‘0) → (¬ ((𝑁 ∘ 𝑃)‘𝑦) = 𝑥 ↔ ¬ ((𝑁 ∘ 𝑃)‘𝑦) = ((𝑁 ∘ 𝑃)‘0))) |
| 40 | 37, 39 | syl5ibrcom 247 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (1..^(♯‘𝐹))) → (𝑥 = ((𝑁 ∘ 𝑃)‘0) → ¬ ((𝑁 ∘ 𝑃)‘𝑦) = 𝑥)) |
| 41 | 36 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (1..^(♯‘𝐹))) → ¬ ((𝑁 ∘ 𝑃)‘𝑦) = ((𝑁 ∘ 𝑃)‘(♯‘𝐹))) |
| 42 | | eqeq2 2747 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)) → (((𝑁 ∘ 𝑃)‘𝑦) = 𝑥 ↔ ((𝑁 ∘ 𝑃)‘𝑦) = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)))) |
| 43 | 42 | notbid 318 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)) → (¬ ((𝑁 ∘ 𝑃)‘𝑦) = 𝑥 ↔ ¬ ((𝑁 ∘ 𝑃)‘𝑦) = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)))) |
| 44 | 41, 43 | syl5ibrcom 247 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (1..^(♯‘𝐹))) → (𝑥 = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)) → ¬ ((𝑁 ∘ 𝑃)‘𝑦) = 𝑥)) |
| 45 | 40, 44 | jaod 859 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (1..^(♯‘𝐹))) → ((𝑥 = ((𝑁 ∘ 𝑃)‘0) ∨ 𝑥 = ((𝑁 ∘ 𝑃)‘(♯‘𝐹))) → ¬ ((𝑁 ∘ 𝑃)‘𝑦) = 𝑥)) |
| 46 | 45 | impancom 451 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 = ((𝑁 ∘ 𝑃)‘0) ∨ 𝑥 = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)))) → (𝑦 ∈ (1..^(♯‘𝐹)) → ¬ ((𝑁 ∘ 𝑃)‘𝑦) = 𝑥)) |
| 47 | 46 | imp 406 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 = ((𝑁 ∘ 𝑃)‘0) ∨ 𝑥 = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)))) ∧ 𝑦 ∈ (1..^(♯‘𝐹))) → ¬ ((𝑁 ∘ 𝑃)‘𝑦) = 𝑥) |
| 48 | 47 | nrexdv 3135 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 = ((𝑁 ∘ 𝑃)‘0) ∨ 𝑥 = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)))) → ¬ ∃𝑦 ∈ (1..^(♯‘𝐹))((𝑁 ∘ 𝑃)‘𝑦) = 𝑥) |
| 49 | 20 | eqcomd 2741 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘𝐹) = (♯‘𝐸)) |
| 50 | 49 | oveq2d 7419 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0...(♯‘𝐹)) = (0...(♯‘𝐸))) |
| 51 | 50 | feq2d 6691 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 ∘ 𝑃):(0...(♯‘𝐹))⟶(Vtx‘𝐻) ↔ (𝑁 ∘ 𝑃):(0...(♯‘𝐸))⟶(Vtx‘𝐻))) |
| 52 | 18, 51 | mpbird 257 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 ∘ 𝑃):(0...(♯‘𝐹))⟶(Vtx‘𝐻)) |
| 53 | 52 | ffnd 6706 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 ∘ 𝑃) Fn (0...(♯‘𝐹))) |
| 54 | 53 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 = ((𝑁 ∘ 𝑃)‘0) ∨ 𝑥 = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)))) → (𝑁 ∘ 𝑃) Fn (0...(♯‘𝐹))) |
| 55 | | fzo0ss1 13704 |
. . . . . . . . . . 11
⊢
(1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹)) |
| 56 | | fzossfz 13693 |
. . . . . . . . . . 11
⊢
(0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) |
| 57 | 55, 56 | sstri 3968 |
. . . . . . . . . 10
⊢
(1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) |
| 58 | 57 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 = ((𝑁 ∘ 𝑃)‘0) ∨ 𝑥 = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)))) → (1..^(♯‘𝐹)) ⊆
(0...(♯‘𝐹))) |
| 59 | 54, 58 | fvelimabd 6951 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 = ((𝑁 ∘ 𝑃)‘0) ∨ 𝑥 = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)))) → (𝑥 ∈ ((𝑁 ∘ 𝑃) “ (1..^(♯‘𝐹))) ↔ ∃𝑦 ∈
(1..^(♯‘𝐹))((𝑁 ∘ 𝑃)‘𝑦) = 𝑥)) |
| 60 | 48, 59 | mtbird 325 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 = ((𝑁 ∘ 𝑃)‘0) ∨ 𝑥 = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)))) → ¬ 𝑥 ∈ ((𝑁 ∘ 𝑃) “ (1..^(♯‘𝐹)))) |
| 61 | 60 | ex 412 |
. . . . . 6
⊢ (𝜑 → ((𝑥 = ((𝑁 ∘ 𝑃)‘0) ∨ 𝑥 = ((𝑁 ∘ 𝑃)‘(♯‘𝐹))) → ¬ 𝑥 ∈ ((𝑁 ∘ 𝑃) “ (1..^(♯‘𝐹))))) |
| 62 | 35, 61 | sylbid 240 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ((𝑁 ∘ 𝑃) “ {0, (♯‘𝐹)}) → ¬ 𝑥 ∈ ((𝑁 ∘ 𝑃) “ (1..^(♯‘𝐹))))) |
| 63 | 62 | ralrimiv 3131 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ((𝑁 ∘ 𝑃) “ {0, (♯‘𝐹)}) ¬ 𝑥 ∈ ((𝑁 ∘ 𝑃) “ (1..^(♯‘𝐹)))) |
| 64 | | disj 4425 |
. . . 4
⊢ ((((𝑁 ∘ 𝑃) “ {0, (♯‘𝐹)}) ∩ ((𝑁 ∘ 𝑃) “ (1..^(♯‘𝐹)))) = ∅ ↔
∀𝑥 ∈ ((𝑁 ∘ 𝑃) “ {0, (♯‘𝐹)}) ¬ 𝑥 ∈ ((𝑁 ∘ 𝑃) “ (1..^(♯‘𝐹)))) |
| 65 | 63, 64 | sylibr 234 |
. . 3
⊢ (𝜑 → (((𝑁 ∘ 𝑃) “ {0, (♯‘𝐹)}) ∩ ((𝑁 ∘ 𝑃) “ (1..^(♯‘𝐹)))) = ∅) |
| 66 | 20 | oveq2d 7419 |
. . . . . . 7
⊢ (𝜑 → (1..^(♯‘𝐸)) = (1..^(♯‘𝐹))) |
| 67 | 66 | reseq2d 5966 |
. . . . . 6
⊢ (𝜑 → ((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐸))) = ((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹)))) |
| 68 | 67 | cnveqd 5855 |
. . . . 5
⊢ (𝜑 → ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐸))) = ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹)))) |
| 69 | 68 | funeqd 6557 |
. . . 4
⊢ (𝜑 → (Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐸))) ↔ Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹))))) |
| 70 | | preq2 4710 |
. . . . . . . 8
⊢
((♯‘𝐸) =
(♯‘𝐹) →
{0, (♯‘𝐸)} =
{0, (♯‘𝐹)}) |
| 71 | 70 | imaeq2d 6047 |
. . . . . . 7
⊢
((♯‘𝐸) =
(♯‘𝐹) →
((𝑁 ∘ 𝑃) “ {0,
(♯‘𝐸)}) =
((𝑁 ∘ 𝑃) “ {0,
(♯‘𝐹)})) |
| 72 | | oveq2 7411 |
. . . . . . . 8
⊢
((♯‘𝐸) =
(♯‘𝐹) →
(1..^(♯‘𝐸)) =
(1..^(♯‘𝐹))) |
| 73 | 72 | imaeq2d 6047 |
. . . . . . 7
⊢
((♯‘𝐸) =
(♯‘𝐹) →
((𝑁 ∘ 𝑃) “
(1..^(♯‘𝐸))) =
((𝑁 ∘ 𝑃) “
(1..^(♯‘𝐹)))) |
| 74 | 71, 73 | ineq12d 4196 |
. . . . . 6
⊢
((♯‘𝐸) =
(♯‘𝐹) →
(((𝑁 ∘ 𝑃) “ {0,
(♯‘𝐸)}) ∩
((𝑁 ∘ 𝑃) “
(1..^(♯‘𝐸)))) =
(((𝑁 ∘ 𝑃) “ {0,
(♯‘𝐹)}) ∩
((𝑁 ∘ 𝑃) “
(1..^(♯‘𝐹))))) |
| 75 | 74 | eqeq1d 2737 |
. . . . 5
⊢
((♯‘𝐸) =
(♯‘𝐹) →
((((𝑁 ∘ 𝑃) “ {0,
(♯‘𝐸)}) ∩
((𝑁 ∘ 𝑃) “
(1..^(♯‘𝐸)))) =
∅ ↔ (((𝑁 ∘
𝑃) “ {0,
(♯‘𝐹)}) ∩
((𝑁 ∘ 𝑃) “
(1..^(♯‘𝐹)))) =
∅)) |
| 76 | 20, 75 | syl 17 |
. . . 4
⊢ (𝜑 → ((((𝑁 ∘ 𝑃) “ {0, (♯‘𝐸)}) ∩ ((𝑁 ∘ 𝑃) “ (1..^(♯‘𝐸)))) = ∅ ↔ (((𝑁 ∘ 𝑃) “ {0, (♯‘𝐹)}) ∩ ((𝑁 ∘ 𝑃) “ (1..^(♯‘𝐹)))) =
∅)) |
| 77 | 69, 76 | 3anbi23d 1441 |
. . 3
⊢ (𝜑 → ((𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃) ∧ Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐸))) ∧ (((𝑁 ∘ 𝑃) “ {0, (♯‘𝐸)}) ∩ ((𝑁 ∘ 𝑃) “ (1..^(♯‘𝐸)))) = ∅) ↔ (𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃) ∧ Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹))) ∧ (((𝑁 ∘ 𝑃) “ {0, (♯‘𝐹)}) ∩ ((𝑁 ∘ 𝑃) “ (1..^(♯‘𝐹)))) =
∅))) |
| 78 | 10, 11, 65, 77 | mpbir3and 1343 |
. 2
⊢ (𝜑 → (𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃) ∧ Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐸))) ∧ (((𝑁 ∘ 𝑃) “ {0, (♯‘𝐸)}) ∩ ((𝑁 ∘ 𝑃) “ (1..^(♯‘𝐸)))) =
∅)) |
| 79 | | ispth 29649 |
. 2
⊢ (𝐸(Paths‘𝐻)(𝑁 ∘ 𝑃) ↔ (𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃) ∧ Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐸))) ∧ (((𝑁 ∘ 𝑃) “ {0, (♯‘𝐸)}) ∩ ((𝑁 ∘ 𝑃) “ (1..^(♯‘𝐸)))) =
∅)) |
| 80 | 78, 79 | sylibr 234 |
1
⊢ (𝜑 → 𝐸(Paths‘𝐻)(𝑁 ∘ 𝑃)) |