Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrimpths Structured version   Visualization version   GIF version

Theorem upgrimpths 47913
Description: Graph isomorphisms between simple pseudographs map paths onto paths. (Contributed by AV, 31-Oct-2025.)
Hypotheses
Ref Expression
upgrimwlk.i 𝐼 = (iEdg‘𝐺)
upgrimwlk.j 𝐽 = (iEdg‘𝐻)
upgrimwlk.g (𝜑𝐺 ∈ USPGraph)
upgrimwlk.h (𝜑𝐻 ∈ USPGraph)
upgrimwlk.n (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
upgrimwlk.e 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
upgrimpths.p (𝜑𝐹(Paths‘𝐺)𝑃)
Assertion
Ref Expression
upgrimpths (𝜑𝐸(Paths‘𝐻)(𝑁𝑃))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼   𝑥,𝐽   𝑥,𝑃   𝜑,𝑥   𝑥,𝐸   𝑥,𝑁
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem upgrimpths
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 upgrimwlk.i . . . 4 𝐼 = (iEdg‘𝐺)
2 upgrimwlk.j . . . 4 𝐽 = (iEdg‘𝐻)
3 upgrimwlk.g . . . 4 (𝜑𝐺 ∈ USPGraph)
4 upgrimwlk.h . . . 4 (𝜑𝐻 ∈ USPGraph)
5 upgrimwlk.n . . . 4 (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
6 upgrimwlk.e . . . 4 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
7 upgrimpths.p . . . . 5 (𝜑𝐹(Paths‘𝐺)𝑃)
8 pthistrl 29660 . . . . 5 (𝐹(Paths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
97, 8syl 17 . . . 4 (𝜑𝐹(Trails‘𝐺)𝑃)
101, 2, 3, 4, 5, 6, 9upgrimtrls 47910 . . 3 (𝜑𝐸(Trails‘𝐻)(𝑁𝑃))
111, 2, 3, 4, 5, 6, 7upgrimpthslem1 47911 . . 3 (𝜑 → Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐹))))
12 pthiswlk 29662 . . . . . . . . . . . 12 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
131wlkf 29549 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
147, 12, 133syl 18 . . . . . . . . . . 11 (𝜑𝐹 ∈ Word dom 𝐼)
15 eqid 2730 . . . . . . . . . . . . 13 (Vtx‘𝐺) = (Vtx‘𝐺)
1615wlkp 29551 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
177, 12, 163syl 18 . . . . . . . . . . 11 (𝜑𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
181, 2, 3, 4, 5, 6, 14, 17upgrimwlklem4 47904 . . . . . . . . . 10 (𝜑 → (𝑁𝑃):(0...(♯‘𝐸))⟶(Vtx‘𝐻))
1918ffnd 6692 . . . . . . . . 9 (𝜑 → (𝑁𝑃) Fn (0...(♯‘𝐸)))
201, 2, 3, 4, 5, 6, 14upgrimwlklem1 47901 . . . . . . . . . . 11 (𝜑 → (♯‘𝐸) = (♯‘𝐹))
21 wlkcl 29550 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
227, 12, 213syl 18 . . . . . . . . . . 11 (𝜑 → (♯‘𝐹) ∈ ℕ0)
2320, 22eqeltrd 2829 . . . . . . . . . 10 (𝜑 → (♯‘𝐸) ∈ ℕ0)
24 0elfz 13592 . . . . . . . . . 10 ((♯‘𝐸) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐸)))
2523, 24syl 17 . . . . . . . . 9 (𝜑 → 0 ∈ (0...(♯‘𝐸)))
26 nn0fz0 13593 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹)))
2722, 26sylib 218 . . . . . . . . . 10 (𝜑 → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
2820oveq2d 7406 . . . . . . . . . 10 (𝜑 → (0...(♯‘𝐸)) = (0...(♯‘𝐹)))
2927, 28eleqtrrd 2832 . . . . . . . . 9 (𝜑 → (♯‘𝐹) ∈ (0...(♯‘𝐸)))
30 fnimapr 6947 . . . . . . . . 9 (((𝑁𝑃) Fn (0...(♯‘𝐸)) ∧ 0 ∈ (0...(♯‘𝐸)) ∧ (♯‘𝐹) ∈ (0...(♯‘𝐸))) → ((𝑁𝑃) “ {0, (♯‘𝐹)}) = {((𝑁𝑃)‘0), ((𝑁𝑃)‘(♯‘𝐹))})
3119, 25, 29, 30syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝑁𝑃) “ {0, (♯‘𝐹)}) = {((𝑁𝑃)‘0), ((𝑁𝑃)‘(♯‘𝐹))})
3231eleq2d 2815 . . . . . . 7 (𝜑 → (𝑥 ∈ ((𝑁𝑃) “ {0, (♯‘𝐹)}) ↔ 𝑥 ∈ {((𝑁𝑃)‘0), ((𝑁𝑃)‘(♯‘𝐹))}))
33 vex 3454 . . . . . . . 8 𝑥 ∈ V
3433elpr 4617 . . . . . . 7 (𝑥 ∈ {((𝑁𝑃)‘0), ((𝑁𝑃)‘(♯‘𝐹))} ↔ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹))))
3532, 34bitrdi 287 . . . . . 6 (𝜑 → (𝑥 ∈ ((𝑁𝑃) “ {0, (♯‘𝐹)}) ↔ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹)))))
361, 2, 3, 4, 5, 6, 7upgrimpthslem2 47912 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (1..^(♯‘𝐹))) → (¬ ((𝑁𝑃)‘𝑦) = ((𝑁𝑃)‘0) ∧ ¬ ((𝑁𝑃)‘𝑦) = ((𝑁𝑃)‘(♯‘𝐹))))
3736simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (1..^(♯‘𝐹))) → ¬ ((𝑁𝑃)‘𝑦) = ((𝑁𝑃)‘0))
38 eqeq2 2742 . . . . . . . . . . . . . 14 (𝑥 = ((𝑁𝑃)‘0) → (((𝑁𝑃)‘𝑦) = 𝑥 ↔ ((𝑁𝑃)‘𝑦) = ((𝑁𝑃)‘0)))
3938notbid 318 . . . . . . . . . . . . 13 (𝑥 = ((𝑁𝑃)‘0) → (¬ ((𝑁𝑃)‘𝑦) = 𝑥 ↔ ¬ ((𝑁𝑃)‘𝑦) = ((𝑁𝑃)‘0)))
4037, 39syl5ibrcom 247 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1..^(♯‘𝐹))) → (𝑥 = ((𝑁𝑃)‘0) → ¬ ((𝑁𝑃)‘𝑦) = 𝑥))
4136simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (1..^(♯‘𝐹))) → ¬ ((𝑁𝑃)‘𝑦) = ((𝑁𝑃)‘(♯‘𝐹)))
42 eqeq2 2742 . . . . . . . . . . . . . 14 (𝑥 = ((𝑁𝑃)‘(♯‘𝐹)) → (((𝑁𝑃)‘𝑦) = 𝑥 ↔ ((𝑁𝑃)‘𝑦) = ((𝑁𝑃)‘(♯‘𝐹))))
4342notbid 318 . . . . . . . . . . . . 13 (𝑥 = ((𝑁𝑃)‘(♯‘𝐹)) → (¬ ((𝑁𝑃)‘𝑦) = 𝑥 ↔ ¬ ((𝑁𝑃)‘𝑦) = ((𝑁𝑃)‘(♯‘𝐹))))
4441, 43syl5ibrcom 247 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1..^(♯‘𝐹))) → (𝑥 = ((𝑁𝑃)‘(♯‘𝐹)) → ¬ ((𝑁𝑃)‘𝑦) = 𝑥))
4540, 44jaod 859 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (1..^(♯‘𝐹))) → ((𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹))) → ¬ ((𝑁𝑃)‘𝑦) = 𝑥))
4645impancom 451 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹)))) → (𝑦 ∈ (1..^(♯‘𝐹)) → ¬ ((𝑁𝑃)‘𝑦) = 𝑥))
4746imp 406 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹)))) ∧ 𝑦 ∈ (1..^(♯‘𝐹))) → ¬ ((𝑁𝑃)‘𝑦) = 𝑥)
4847nrexdv 3129 . . . . . . . 8 ((𝜑 ∧ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹)))) → ¬ ∃𝑦 ∈ (1..^(♯‘𝐹))((𝑁𝑃)‘𝑦) = 𝑥)
4920eqcomd 2736 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝐹) = (♯‘𝐸))
5049oveq2d 7406 . . . . . . . . . . . . 13 (𝜑 → (0...(♯‘𝐹)) = (0...(♯‘𝐸)))
5150feq2d 6675 . . . . . . . . . . . 12 (𝜑 → ((𝑁𝑃):(0...(♯‘𝐹))⟶(Vtx‘𝐻) ↔ (𝑁𝑃):(0...(♯‘𝐸))⟶(Vtx‘𝐻)))
5218, 51mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝑁𝑃):(0...(♯‘𝐹))⟶(Vtx‘𝐻))
5352ffnd 6692 . . . . . . . . . 10 (𝜑 → (𝑁𝑃) Fn (0...(♯‘𝐹)))
5453adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹)))) → (𝑁𝑃) Fn (0...(♯‘𝐹)))
55 fzo0ss1 13657 . . . . . . . . . . 11 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
56 fzossfz 13646 . . . . . . . . . . 11 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
5755, 56sstri 3959 . . . . . . . . . 10 (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
5857a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹)))) → (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
5954, 58fvelimabd 6937 . . . . . . . 8 ((𝜑 ∧ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹)))) → (𝑥 ∈ ((𝑁𝑃) “ (1..^(♯‘𝐹))) ↔ ∃𝑦 ∈ (1..^(♯‘𝐹))((𝑁𝑃)‘𝑦) = 𝑥))
6048, 59mtbird 325 . . . . . . 7 ((𝜑 ∧ (𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹)))) → ¬ 𝑥 ∈ ((𝑁𝑃) “ (1..^(♯‘𝐹))))
6160ex 412 . . . . . 6 (𝜑 → ((𝑥 = ((𝑁𝑃)‘0) ∨ 𝑥 = ((𝑁𝑃)‘(♯‘𝐹))) → ¬ 𝑥 ∈ ((𝑁𝑃) “ (1..^(♯‘𝐹)))))
6235, 61sylbid 240 . . . . 5 (𝜑 → (𝑥 ∈ ((𝑁𝑃) “ {0, (♯‘𝐹)}) → ¬ 𝑥 ∈ ((𝑁𝑃) “ (1..^(♯‘𝐹)))))
6362ralrimiv 3125 . . . 4 (𝜑 → ∀𝑥 ∈ ((𝑁𝑃) “ {0, (♯‘𝐹)}) ¬ 𝑥 ∈ ((𝑁𝑃) “ (1..^(♯‘𝐹))))
64 disj 4416 . . . 4 ((((𝑁𝑃) “ {0, (♯‘𝐹)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐹)))) = ∅ ↔ ∀𝑥 ∈ ((𝑁𝑃) “ {0, (♯‘𝐹)}) ¬ 𝑥 ∈ ((𝑁𝑃) “ (1..^(♯‘𝐹))))
6563, 64sylibr 234 . . 3 (𝜑 → (((𝑁𝑃) “ {0, (♯‘𝐹)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐹)))) = ∅)
6620oveq2d 7406 . . . . . . 7 (𝜑 → (1..^(♯‘𝐸)) = (1..^(♯‘𝐹)))
6766reseq2d 5953 . . . . . 6 (𝜑 → ((𝑁𝑃) ↾ (1..^(♯‘𝐸))) = ((𝑁𝑃) ↾ (1..^(♯‘𝐹))))
6867cnveqd 5842 . . . . 5 (𝜑((𝑁𝑃) ↾ (1..^(♯‘𝐸))) = ((𝑁𝑃) ↾ (1..^(♯‘𝐹))))
6968funeqd 6541 . . . 4 (𝜑 → (Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐸))) ↔ Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐹)))))
70 preq2 4701 . . . . . . . 8 ((♯‘𝐸) = (♯‘𝐹) → {0, (♯‘𝐸)} = {0, (♯‘𝐹)})
7170imaeq2d 6034 . . . . . . 7 ((♯‘𝐸) = (♯‘𝐹) → ((𝑁𝑃) “ {0, (♯‘𝐸)}) = ((𝑁𝑃) “ {0, (♯‘𝐹)}))
72 oveq2 7398 . . . . . . . 8 ((♯‘𝐸) = (♯‘𝐹) → (1..^(♯‘𝐸)) = (1..^(♯‘𝐹)))
7372imaeq2d 6034 . . . . . . 7 ((♯‘𝐸) = (♯‘𝐹) → ((𝑁𝑃) “ (1..^(♯‘𝐸))) = ((𝑁𝑃) “ (1..^(♯‘𝐹))))
7471, 73ineq12d 4187 . . . . . 6 ((♯‘𝐸) = (♯‘𝐹) → (((𝑁𝑃) “ {0, (♯‘𝐸)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐸)))) = (((𝑁𝑃) “ {0, (♯‘𝐹)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐹)))))
7574eqeq1d 2732 . . . . 5 ((♯‘𝐸) = (♯‘𝐹) → ((((𝑁𝑃) “ {0, (♯‘𝐸)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐸)))) = ∅ ↔ (((𝑁𝑃) “ {0, (♯‘𝐹)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐹)))) = ∅))
7620, 75syl 17 . . . 4 (𝜑 → ((((𝑁𝑃) “ {0, (♯‘𝐸)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐸)))) = ∅ ↔ (((𝑁𝑃) “ {0, (♯‘𝐹)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐹)))) = ∅))
7769, 763anbi23d 1441 . . 3 (𝜑 → ((𝐸(Trails‘𝐻)(𝑁𝑃) ∧ Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐸))) ∧ (((𝑁𝑃) “ {0, (♯‘𝐸)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐸)))) = ∅) ↔ (𝐸(Trails‘𝐻)(𝑁𝑃) ∧ Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐹))) ∧ (((𝑁𝑃) “ {0, (♯‘𝐹)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐹)))) = ∅)))
7810, 11, 65, 77mpbir3and 1343 . 2 (𝜑 → (𝐸(Trails‘𝐻)(𝑁𝑃) ∧ Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐸))) ∧ (((𝑁𝑃) “ {0, (♯‘𝐸)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐸)))) = ∅))
79 ispth 29658 . 2 (𝐸(Paths‘𝐻)(𝑁𝑃) ↔ (𝐸(Trails‘𝐻)(𝑁𝑃) ∧ Fun ((𝑁𝑃) ↾ (1..^(♯‘𝐸))) ∧ (((𝑁𝑃) “ {0, (♯‘𝐸)}) ∩ ((𝑁𝑃) “ (1..^(♯‘𝐸)))) = ∅))
8078, 79sylibr 234 1 (𝜑𝐸(Paths‘𝐻)(𝑁𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3916  wss 3917  c0 4299  {cpr 4594   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  cres 5643  cima 5644  ccom 5645  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  0cn0 12449  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485  Vtxcvtx 28930  iEdgciedg 28931  USPGraphcuspgr 29082  Walkscwlks 29531  Trailsctrls 29625  Pathscpths 29647   GraphIso cgrim 47879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-edg 28982  df-uhgr 28992  df-upgr 29016  df-uspgr 29084  df-wlks 29534  df-trls 29627  df-pths 29651  df-grim 47882
This theorem is referenced by:  upgrimcycls  47915
  Copyright terms: Public domain W3C validator