Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzinico3 Structured version   Visualization version   GIF version

Theorem uzinico3 44575
Description: An upper interval of integers doesn't change when it's intersected with a left-closed, unbounded above interval, with the same lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
uzinico3.1 (𝜑𝑀 ∈ ℤ)
uzinico3.2 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzinico3 (𝜑𝑍 = (𝑍 ∩ (𝑀[,)+∞)))

Proof of Theorem uzinico3
StepHypRef Expression
1 uzinico3.1 . . . 4 (𝜑𝑀 ∈ ℤ)
21uzidd 12843 . . 3 (𝜑𝑀 ∈ (ℤ𝑀))
32uzinico2 44574 . 2 (𝜑 → (ℤ𝑀) = ((ℤ𝑀) ∩ (𝑀[,)+∞)))
4 uzinico3.2 . . . 4 𝑍 = (ℤ𝑀)
54a1i 11 . . 3 (𝜑𝑍 = (ℤ𝑀))
65ineq1d 4211 . . 3 (𝜑 → (𝑍 ∩ (𝑀[,)+∞)) = ((ℤ𝑀) ∩ (𝑀[,)+∞)))
75, 6eqeq12d 2747 . 2 (𝜑 → (𝑍 = (𝑍 ∩ (𝑀[,)+∞)) ↔ (ℤ𝑀) = ((ℤ𝑀) ∩ (𝑀[,)+∞))))
83, 7mpbird 257 1 (𝜑𝑍 = (𝑍 ∩ (𝑀[,)+∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cin 3947  cfv 6543  (class class class)co 7412  +∞cpnf 11250  cz 12563  cuz 12827  [,)cico 13331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-pre-lttri 11188  ax-pre-lttrn 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-neg 11452  df-z 12564  df-uz 12828  df-ico 13335
This theorem is referenced by:  liminfvaluz  44807  limsupvaluz3  44813
  Copyright terms: Public domain W3C validator