Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzinico3 Structured version   Visualization version   GIF version

Theorem uzinico3 41304
Description: An upper interval of integers doesn't change when it's intersected with a left-closed, unbounded above interval, with the same lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
uzinico3.1 (𝜑𝑀 ∈ ℤ)
uzinico3.2 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzinico3 (𝜑𝑍 = (𝑍 ∩ (𝑀[,)+∞)))

Proof of Theorem uzinico3
StepHypRef Expression
1 uzinico3.1 . . . 4 (𝜑𝑀 ∈ ℤ)
21uzidd 41143 . . 3 (𝜑𝑀 ∈ (ℤ𝑀))
32uzinico2 41303 . 2 (𝜑 → (ℤ𝑀) = ((ℤ𝑀) ∩ (𝑀[,)+∞)))
4 uzinico3.2 . . . 4 𝑍 = (ℤ𝑀)
54a1i 11 . . 3 (𝜑𝑍 = (ℤ𝑀))
65ineq1d 4069 . . 3 (𝜑 → (𝑍 ∩ (𝑀[,)+∞)) = ((ℤ𝑀) ∩ (𝑀[,)+∞)))
75, 6eqeq12d 2786 . 2 (𝜑 → (𝑍 = (𝑍 ∩ (𝑀[,)+∞)) ↔ (ℤ𝑀) = ((ℤ𝑀) ∩ (𝑀[,)+∞))))
83, 7mpbird 249 1 (𝜑𝑍 = (𝑍 ∩ (𝑀[,)+∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1508  wcel 2051  cin 3821  cfv 6185  (class class class)co 6974  +∞cpnf 10469  cz 11791  cuz 12056  [,)cico 12554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-pre-lttri 10407  ax-pre-lttrn 10408
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-neg 10671  df-z 11792  df-uz 12057  df-ico 12558
This theorem is referenced by:  liminfvaluz  41538  limsupvaluz3  41544
  Copyright terms: Public domain W3C validator