![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzinico3 | Structured version Visualization version GIF version |
Description: An upper interval of integers doesn't change when it's intersected with a left-closed, unbounded above interval, with the same lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
uzinico3.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
uzinico3.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
uzinico3 | ⊢ (𝜑 → 𝑍 = (𝑍 ∩ (𝑀[,)+∞))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzinico3.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | 1 | uzidd 12901 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
3 | 2 | uzinico2 45544 | . 2 ⊢ (𝜑 → (ℤ≥‘𝑀) = ((ℤ≥‘𝑀) ∩ (𝑀[,)+∞))) |
4 | uzinico3.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 = (ℤ≥‘𝑀)) |
6 | 5 | ineq1d 4230 | . . 3 ⊢ (𝜑 → (𝑍 ∩ (𝑀[,)+∞)) = ((ℤ≥‘𝑀) ∩ (𝑀[,)+∞))) |
7 | 5, 6 | eqeq12d 2753 | . 2 ⊢ (𝜑 → (𝑍 = (𝑍 ∩ (𝑀[,)+∞)) ↔ (ℤ≥‘𝑀) = ((ℤ≥‘𝑀) ∩ (𝑀[,)+∞)))) |
8 | 3, 7 | mpbird 257 | 1 ⊢ (𝜑 → 𝑍 = (𝑍 ∩ (𝑀[,)+∞))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∩ cin 3965 ‘cfv 6569 (class class class)co 7438 +∞cpnf 11299 ℤcz 12620 ℤ≥cuz 12885 [,)cico 13395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-pre-lttri 11236 ax-pre-lttrn 11237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-neg 11502 df-z 12621 df-uz 12886 df-ico 13399 |
This theorem is referenced by: liminfvaluz 45776 limsupvaluz3 45782 |
Copyright terms: Public domain | W3C validator |