Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzinico3 | Structured version Visualization version GIF version |
Description: An upper interval of integers doesn't change when it's intersected with a left-closed, unbounded above interval, with the same lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
uzinico3.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
uzinico3.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
uzinico3 | ⊢ (𝜑 → 𝑍 = (𝑍 ∩ (𝑀[,)+∞))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzinico3.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | 1 | uzidd 12454 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
3 | 2 | uzinico2 42775 | . 2 ⊢ (𝜑 → (ℤ≥‘𝑀) = ((ℤ≥‘𝑀) ∩ (𝑀[,)+∞))) |
4 | uzinico3.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 = (ℤ≥‘𝑀)) |
6 | 5 | ineq1d 4126 | . . 3 ⊢ (𝜑 → (𝑍 ∩ (𝑀[,)+∞)) = ((ℤ≥‘𝑀) ∩ (𝑀[,)+∞))) |
7 | 5, 6 | eqeq12d 2753 | . 2 ⊢ (𝜑 → (𝑍 = (𝑍 ∩ (𝑀[,)+∞)) ↔ (ℤ≥‘𝑀) = ((ℤ≥‘𝑀) ∩ (𝑀[,)+∞)))) |
8 | 3, 7 | mpbird 260 | 1 ⊢ (𝜑 → 𝑍 = (𝑍 ∩ (𝑀[,)+∞))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∩ cin 3865 ‘cfv 6380 (class class class)co 7213 +∞cpnf 10864 ℤcz 12176 ℤ≥cuz 12438 [,)cico 12937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-pre-lttri 10803 ax-pre-lttrn 10804 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-neg 11065 df-z 12177 df-uz 12439 df-ico 12941 |
This theorem is referenced by: liminfvaluz 43008 limsupvaluz3 43014 |
Copyright terms: Public domain | W3C validator |