Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupvaluz3 | Structured version Visualization version GIF version |
Description: Alternate definition of lim inf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsupvaluz3.k | ⊢ Ⅎ𝑘𝜑 |
limsupvaluz3.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
limsupvaluz3.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
limsupvaluz3.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
limsupvaluz3 | ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupvaluz3.k | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | limsupvaluz3.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | 2 | fvexi 6770 | . . 3 ⊢ 𝑍 ∈ V |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝑍 ∈ V) |
5 | limsupvaluz3.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
6 | 5 | zred 12355 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
7 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑍 ∩ (𝑀[,)+∞))) → 𝑘 ∈ (𝑍 ∩ (𝑀[,)+∞))) | |
8 | 5, 2 | uzinico3 42991 | . . . . . 6 ⊢ (𝜑 → 𝑍 = (𝑍 ∩ (𝑀[,)+∞))) |
9 | 8 | eqcomd 2744 | . . . . 5 ⊢ (𝜑 → (𝑍 ∩ (𝑀[,)+∞)) = 𝑍) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑍 ∩ (𝑀[,)+∞))) → (𝑍 ∩ (𝑀[,)+∞)) = 𝑍) |
11 | 7, 10 | eleqtrd 2841 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑍 ∩ (𝑀[,)+∞))) → 𝑘 ∈ 𝑍) |
12 | limsupvaluz3.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) | |
13 | 11, 12 | syldan 590 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑍 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*) |
14 | 1, 4, 6, 13 | limsupval4 43225 | 1 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 +∞cpnf 10937 ℝ*cxr 10939 ℤcz 12249 ℤ≥cuz 12511 -𝑒cxne 12774 [,)cico 13010 lim supclsp 15107 lim infclsi 43182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-xneg 12777 df-ico 13014 df-limsup 15108 df-liminf 43183 |
This theorem is referenced by: limsupvaluz4 43231 |
Copyright terms: Public domain | W3C validator |