![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfvaluz | Structured version Visualization version GIF version |
Description: Alternate definition of lim inf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminfvaluz.k | β’ β²ππ |
liminfvaluz.m | β’ (π β π β β€) |
liminfvaluz.z | β’ π = (β€β₯βπ) |
liminfvaluz.b | β’ ((π β§ π β π) β π΅ β β*) |
Ref | Expression |
---|---|
liminfvaluz | β’ (π β (lim infβ(π β π β¦ π΅)) = -π(lim supβ(π β π β¦ -ππ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminfvaluz.k | . 2 β’ β²ππ | |
2 | liminfvaluz.z | . . . 4 β’ π = (β€β₯βπ) | |
3 | 2 | fvexi 6905 | . . 3 β’ π β V |
4 | 3 | a1i 11 | . 2 β’ (π β π β V) |
5 | liminfvaluz.m | . . 3 β’ (π β π β β€) | |
6 | 5 | zred 12682 | . 2 β’ (π β π β β) |
7 | simpr 484 | . . . 4 β’ ((π β§ π β (π β© (π[,)+β))) β π β (π β© (π[,)+β))) | |
8 | 5, 2 | uzinico3 44861 | . . . . . 6 β’ (π β π = (π β© (π[,)+β))) |
9 | 8 | eqcomd 2733 | . . . . 5 β’ (π β (π β© (π[,)+β)) = π) |
10 | 9 | adantr 480 | . . . 4 β’ ((π β§ π β (π β© (π[,)+β))) β (π β© (π[,)+β)) = π) |
11 | 7, 10 | eleqtrd 2830 | . . 3 β’ ((π β§ π β (π β© (π[,)+β))) β π β π) |
12 | liminfvaluz.b | . . 3 β’ ((π β§ π β π) β π΅ β β*) | |
13 | 11, 12 | syldan 590 | . 2 β’ ((π β§ π β (π β© (π[,)+β))) β π΅ β β*) |
14 | 1, 4, 6, 13 | liminfval3 45091 | 1 β’ (π β (lim infβ(π β π β¦ π΅)) = -π(lim supβ(π β π β¦ -ππ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β²wnf 1778 β wcel 2099 Vcvv 3469 β© cin 3943 β¦ cmpt 5225 βcfv 6542 (class class class)co 7414 +βcpnf 11261 β*cxr 11263 β€cz 12574 β€β₯cuz 12838 -πcxne 13107 [,)cico 13344 lim supclsp 15432 lim infclsi 45052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9451 df-inf 9452 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-n0 12489 df-z 12575 df-uz 12839 df-q 12949 df-xneg 13110 df-ico 13348 df-limsup 15433 df-liminf 45053 |
This theorem is referenced by: liminfvaluz2 45096 liminfvaluz3 45097 |
Copyright terms: Public domain | W3C validator |