Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfvaluz Structured version   Visualization version   GIF version

Theorem liminfvaluz 45093
Description: Alternate definition of lim inf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfvaluz.k β„²π‘˜πœ‘
liminfvaluz.m (πœ‘ β†’ 𝑀 ∈ β„€)
liminfvaluz.z 𝑍 = (β„€β‰₯β€˜π‘€)
liminfvaluz.b ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ 𝐡 ∈ ℝ*)
Assertion
Ref Expression
liminfvaluz (πœ‘ β†’ (lim infβ€˜(π‘˜ ∈ 𝑍 ↦ 𝐡)) = -𝑒(lim supβ€˜(π‘˜ ∈ 𝑍 ↦ -𝑒𝐡)))
Distinct variable groups:   π‘˜,𝑀   π‘˜,𝑍
Allowed substitution hints:   πœ‘(π‘˜)   𝐡(π‘˜)

Proof of Theorem liminfvaluz
StepHypRef Expression
1 liminfvaluz.k . 2 β„²π‘˜πœ‘
2 liminfvaluz.z . . . 4 𝑍 = (β„€β‰₯β€˜π‘€)
32fvexi 6905 . . 3 𝑍 ∈ V
43a1i 11 . 2 (πœ‘ β†’ 𝑍 ∈ V)
5 liminfvaluz.m . . 3 (πœ‘ β†’ 𝑀 ∈ β„€)
65zred 12682 . 2 (πœ‘ β†’ 𝑀 ∈ ℝ)
7 simpr 484 . . . 4 ((πœ‘ ∧ π‘˜ ∈ (𝑍 ∩ (𝑀[,)+∞))) β†’ π‘˜ ∈ (𝑍 ∩ (𝑀[,)+∞)))
85, 2uzinico3 44861 . . . . . 6 (πœ‘ β†’ 𝑍 = (𝑍 ∩ (𝑀[,)+∞)))
98eqcomd 2733 . . . . 5 (πœ‘ β†’ (𝑍 ∩ (𝑀[,)+∞)) = 𝑍)
109adantr 480 . . . 4 ((πœ‘ ∧ π‘˜ ∈ (𝑍 ∩ (𝑀[,)+∞))) β†’ (𝑍 ∩ (𝑀[,)+∞)) = 𝑍)
117, 10eleqtrd 2830 . . 3 ((πœ‘ ∧ π‘˜ ∈ (𝑍 ∩ (𝑀[,)+∞))) β†’ π‘˜ ∈ 𝑍)
12 liminfvaluz.b . . 3 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ 𝐡 ∈ ℝ*)
1311, 12syldan 590 . 2 ((πœ‘ ∧ π‘˜ ∈ (𝑍 ∩ (𝑀[,)+∞))) β†’ 𝐡 ∈ ℝ*)
141, 4, 6, 13liminfval3 45091 1 (πœ‘ β†’ (lim infβ€˜(π‘˜ ∈ 𝑍 ↦ 𝐡)) = -𝑒(lim supβ€˜(π‘˜ ∈ 𝑍 ↦ -𝑒𝐡)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534  β„²wnf 1778   ∈ wcel 2099  Vcvv 3469   ∩ cin 3943   ↦ cmpt 5225  β€˜cfv 6542  (class class class)co 7414  +∞cpnf 11261  β„*cxr 11263  β„€cz 12574  β„€β‰₯cuz 12838  -𝑒cxne 13107  [,)cico 13344  lim supclsp 15432  lim infclsi 45052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-pre-sup 11202
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-sup 9451  df-inf 9452  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-n0 12489  df-z 12575  df-uz 12839  df-q 12949  df-xneg 13110  df-ico 13348  df-limsup 15433  df-liminf 45053
This theorem is referenced by:  liminfvaluz2  45096  liminfvaluz3  45097
  Copyright terms: Public domain W3C validator