| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfvaluz | Structured version Visualization version GIF version | ||
| Description: Alternate definition of lim inf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminfvaluz.k | ⊢ Ⅎ𝑘𝜑 |
| liminfvaluz.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| liminfvaluz.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| liminfvaluz.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| liminfvaluz | ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | liminfvaluz.k | . 2 ⊢ Ⅎ𝑘𝜑 | |
| 2 | liminfvaluz.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | 2 | fvexi 6831 | . . 3 ⊢ 𝑍 ∈ V |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝑍 ∈ V) |
| 5 | liminfvaluz.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 6 | 5 | zred 12572 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑍 ∩ (𝑀[,)+∞))) → 𝑘 ∈ (𝑍 ∩ (𝑀[,)+∞))) | |
| 8 | 5, 2 | uzinico3 45602 | . . . . . 6 ⊢ (𝜑 → 𝑍 = (𝑍 ∩ (𝑀[,)+∞))) |
| 9 | 8 | eqcomd 2737 | . . . . 5 ⊢ (𝜑 → (𝑍 ∩ (𝑀[,)+∞)) = 𝑍) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑍 ∩ (𝑀[,)+∞))) → (𝑍 ∩ (𝑀[,)+∞)) = 𝑍) |
| 11 | 7, 10 | eleqtrd 2833 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑍 ∩ (𝑀[,)+∞))) → 𝑘 ∈ 𝑍) |
| 12 | liminfvaluz.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) | |
| 13 | 11, 12 | syldan 591 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑍 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*) |
| 14 | 1, 4, 6, 13 | liminfval3 45828 | 1 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 +∞cpnf 11138 ℝ*cxr 11140 ℤcz 12463 ℤ≥cuz 12727 -𝑒cxne 13003 [,)cico 13242 lim supclsp 15372 lim infclsi 45789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-q 12842 df-xneg 13006 df-ico 13246 df-limsup 15373 df-liminf 45790 |
| This theorem is referenced by: liminfvaluz2 45833 liminfvaluz3 45834 |
| Copyright terms: Public domain | W3C validator |