![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlklenvclwlk | Structured version Visualization version GIF version |
Description: The number of vertices in a walk equals the length of the walk after it is "closed" (i.e. enhanced by an edge from its last vertex to its first vertex). (Contributed by Alexander van der Vekens, 29-Jun-2018.) (Revised by AV, 2-May-2021.) (Revised by JJ, 14-Jan-2024.) |
Ref | Expression |
---|---|
wlklenvclwlk | ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (〈𝐹, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (Walks‘𝐺) → (♯‘𝐹) = (♯‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5150 | . . 3 ⊢ (𝐹(Walks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉) ↔ 〈𝐹, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (Walks‘𝐺)) | |
2 | wlkcl 29501 | . . . 4 ⊢ (𝐹(Walks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉) → (♯‘𝐹) ∈ ℕ0) | |
3 | wlklenvp1 29504 | . . . 4 ⊢ (𝐹(Walks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉) → (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = ((♯‘𝐹) + 1)) | |
4 | 2, 3 | jca 510 | . . 3 ⊢ (𝐹(Walks‘𝐺)(𝑊 ++ 〈“(𝑊‘0)”〉) → ((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = ((♯‘𝐹) + 1))) |
5 | 1, 4 | sylbir 234 | . 2 ⊢ (〈𝐹, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (Walks‘𝐺) → ((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = ((♯‘𝐹) + 1))) |
6 | ccatws1len 14606 | . . . . . . 7 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = ((♯‘𝑊) + 1)) | |
7 | 6 | eqeq1d 2727 | . . . . . 6 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = ((♯‘𝐹) + 1) ↔ ((♯‘𝑊) + 1) = ((♯‘𝐹) + 1))) |
8 | eqcom 2732 | . . . . . 6 ⊢ (((♯‘𝑊) + 1) = ((♯‘𝐹) + 1) ↔ ((♯‘𝐹) + 1) = ((♯‘𝑊) + 1)) | |
9 | 7, 8 | bitrdi 286 | . . . . 5 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = ((♯‘𝐹) + 1) ↔ ((♯‘𝐹) + 1) = ((♯‘𝑊) + 1))) |
10 | 9 | adantr 479 | . . . 4 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = ((♯‘𝐹) + 1) ↔ ((♯‘𝐹) + 1) = ((♯‘𝑊) + 1))) |
11 | nn0cn 12515 | . . . . . . 7 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ) | |
12 | 11 | adantl 480 | . . . . . 6 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → (♯‘𝐹) ∈ ℂ) |
13 | lencl 14519 | . . . . . . . 8 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℕ0) | |
14 | 13 | nn0cnd 12567 | . . . . . . 7 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℂ) |
15 | 14 | adantr 479 | . . . . . 6 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → (♯‘𝑊) ∈ ℂ) |
16 | 1cnd 11241 | . . . . . 6 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → 1 ∈ ℂ) | |
17 | 12, 15, 16 | addcan2d 11450 | . . . . 5 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → (((♯‘𝐹) + 1) = ((♯‘𝑊) + 1) ↔ (♯‘𝐹) = (♯‘𝑊))) |
18 | 17 | biimpd 228 | . . . 4 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → (((♯‘𝐹) + 1) = ((♯‘𝑊) + 1) → (♯‘𝐹) = (♯‘𝑊))) |
19 | 10, 18 | sylbid 239 | . . 3 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = ((♯‘𝐹) + 1) → (♯‘𝐹) = (♯‘𝑊))) |
20 | 19 | expimpd 452 | . 2 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = ((♯‘𝐹) + 1)) → (♯‘𝐹) = (♯‘𝑊))) |
21 | 5, 20 | syl5 34 | 1 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (〈𝐹, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (Walks‘𝐺) → (♯‘𝐹) = (♯‘𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 〈cop 4636 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 ℂcc 11138 0cc0 11140 1c1 11141 + caddc 11143 ℕ0cn0 12505 ♯chash 14325 Word cword 14500 ++ cconcat 14556 〈“cs1 14581 Vtxcvtx 28881 Walkscwlks 29482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-fzo 13663 df-hash 14326 df-word 14501 df-concat 14557 df-s1 14582 df-wlks 29485 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |