MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlklenvclwlk Structured version   Visualization version   GIF version

Theorem wlklenvclwlk 29625
Description: The number of vertices in a walk equals the length of the walk after it is "closed" (i.e. enhanced by an edge from its last vertex to its first vertex). (Contributed by Alexander van der Vekens, 29-Jun-2018.) (Revised by AV, 2-May-2021.) (Revised by JJ, 14-Jan-2024.)
Assertion
Ref Expression
wlklenvclwlk (𝑊 ∈ Word (Vtx‘𝐺) → (⟨𝐹, (𝑊 ++ ⟨“(𝑊‘0)”⟩)⟩ ∈ (Walks‘𝐺) → (♯‘𝐹) = (♯‘𝑊)))

Proof of Theorem wlklenvclwlk
StepHypRef Expression
1 df-br 5090 . . 3 (𝐹(Walks‘𝐺)(𝑊 ++ ⟨“(𝑊‘0)”⟩) ↔ ⟨𝐹, (𝑊 ++ ⟨“(𝑊‘0)”⟩)⟩ ∈ (Walks‘𝐺))
2 wlkcl 29587 . . . 4 (𝐹(Walks‘𝐺)(𝑊 ++ ⟨“(𝑊‘0)”⟩) → (♯‘𝐹) ∈ ℕ0)
3 wlklenvp1 29590 . . . 4 (𝐹(Walks‘𝐺)(𝑊 ++ ⟨“(𝑊‘0)”⟩) → (♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝐹) + 1))
42, 3jca 511 . . 3 (𝐹(Walks‘𝐺)(𝑊 ++ ⟨“(𝑊‘0)”⟩) → ((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝐹) + 1)))
51, 4sylbir 235 . 2 (⟨𝐹, (𝑊 ++ ⟨“(𝑊‘0)”⟩)⟩ ∈ (Walks‘𝐺) → ((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝐹) + 1)))
6 ccatws1len 14520 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝑊) + 1))
76eqeq1d 2732 . . . . . 6 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝐹) + 1) ↔ ((♯‘𝑊) + 1) = ((♯‘𝐹) + 1)))
8 eqcom 2737 . . . . . 6 (((♯‘𝑊) + 1) = ((♯‘𝐹) + 1) ↔ ((♯‘𝐹) + 1) = ((♯‘𝑊) + 1))
97, 8bitrdi 287 . . . . 5 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝐹) + 1) ↔ ((♯‘𝐹) + 1) = ((♯‘𝑊) + 1)))
109adantr 480 . . . 4 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → ((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝐹) + 1) ↔ ((♯‘𝐹) + 1) = ((♯‘𝑊) + 1)))
11 nn0cn 12383 . . . . . . 7 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ)
1211adantl 481 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → (♯‘𝐹) ∈ ℂ)
13 lencl 14432 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℕ0)
1413nn0cnd 12436 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℂ)
1514adantr 480 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → (♯‘𝑊) ∈ ℂ)
16 1cnd 11099 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → 1 ∈ ℂ)
1712, 15, 16addcan2d 11309 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → (((♯‘𝐹) + 1) = ((♯‘𝑊) + 1) ↔ (♯‘𝐹) = (♯‘𝑊)))
1817biimpd 229 . . . 4 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → (((♯‘𝐹) + 1) = ((♯‘𝑊) + 1) → (♯‘𝐹) = (♯‘𝑊)))
1910, 18sylbid 240 . . 3 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → ((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝐹) + 1) → (♯‘𝐹) = (♯‘𝑊)))
2019expimpd 453 . 2 (𝑊 ∈ Word (Vtx‘𝐺) → (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝐹) + 1)) → (♯‘𝐹) = (♯‘𝑊)))
215, 20syl5 34 1 (𝑊 ∈ Word (Vtx‘𝐺) → (⟨𝐹, (𝑊 ++ ⟨“(𝑊‘0)”⟩)⟩ ∈ (Walks‘𝐺) → (♯‘𝐹) = (♯‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  cop 4580   class class class wbr 5089  cfv 6477  (class class class)co 7341  cc 10996  0cc0 10998  1c1 10999   + caddc 11001  0cn0 12373  chash 14229  Word cword 14412   ++ cconcat 14469  ⟨“cs1 14495  Vtxcvtx 28967  Walkscwlks 29568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230  df-word 14413  df-concat 14470  df-s1 14496  df-wlks 29571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator