MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlklenvclwlk Structured version   Visualization version   GIF version

Theorem wlklenvclwlk 29673
Description: The number of vertices in a walk equals the length of the walk after it is "closed" (i.e. enhanced by an edge from its last vertex to its first vertex). (Contributed by Alexander van der Vekens, 29-Jun-2018.) (Revised by AV, 2-May-2021.) (Revised by JJ, 14-Jan-2024.)
Assertion
Ref Expression
wlklenvclwlk (𝑊 ∈ Word (Vtx‘𝐺) → (⟨𝐹, (𝑊 ++ ⟨“(𝑊‘0)”⟩)⟩ ∈ (Walks‘𝐺) → (♯‘𝐹) = (♯‘𝑊)))

Proof of Theorem wlklenvclwlk
StepHypRef Expression
1 df-br 5144 . . 3 (𝐹(Walks‘𝐺)(𝑊 ++ ⟨“(𝑊‘0)”⟩) ↔ ⟨𝐹, (𝑊 ++ ⟨“(𝑊‘0)”⟩)⟩ ∈ (Walks‘𝐺))
2 wlkcl 29633 . . . 4 (𝐹(Walks‘𝐺)(𝑊 ++ ⟨“(𝑊‘0)”⟩) → (♯‘𝐹) ∈ ℕ0)
3 wlklenvp1 29636 . . . 4 (𝐹(Walks‘𝐺)(𝑊 ++ ⟨“(𝑊‘0)”⟩) → (♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝐹) + 1))
42, 3jca 511 . . 3 (𝐹(Walks‘𝐺)(𝑊 ++ ⟨“(𝑊‘0)”⟩) → ((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝐹) + 1)))
51, 4sylbir 235 . 2 (⟨𝐹, (𝑊 ++ ⟨“(𝑊‘0)”⟩)⟩ ∈ (Walks‘𝐺) → ((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝐹) + 1)))
6 ccatws1len 14658 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝑊) + 1))
76eqeq1d 2739 . . . . . 6 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝐹) + 1) ↔ ((♯‘𝑊) + 1) = ((♯‘𝐹) + 1)))
8 eqcom 2744 . . . . . 6 (((♯‘𝑊) + 1) = ((♯‘𝐹) + 1) ↔ ((♯‘𝐹) + 1) = ((♯‘𝑊) + 1))
97, 8bitrdi 287 . . . . 5 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝐹) + 1) ↔ ((♯‘𝐹) + 1) = ((♯‘𝑊) + 1)))
109adantr 480 . . . 4 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → ((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝐹) + 1) ↔ ((♯‘𝐹) + 1) = ((♯‘𝑊) + 1)))
11 nn0cn 12536 . . . . . . 7 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ)
1211adantl 481 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → (♯‘𝐹) ∈ ℂ)
13 lencl 14571 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℕ0)
1413nn0cnd 12589 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℂ)
1514adantr 480 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → (♯‘𝑊) ∈ ℂ)
16 1cnd 11256 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → 1 ∈ ℂ)
1712, 15, 16addcan2d 11465 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → (((♯‘𝐹) + 1) = ((♯‘𝑊) + 1) ↔ (♯‘𝐹) = (♯‘𝑊)))
1817biimpd 229 . . . 4 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → (((♯‘𝐹) + 1) = ((♯‘𝑊) + 1) → (♯‘𝐹) = (♯‘𝑊)))
1910, 18sylbid 240 . . 3 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → ((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝐹) + 1) → (♯‘𝐹) = (♯‘𝑊)))
2019expimpd 453 . 2 (𝑊 ∈ Word (Vtx‘𝐺) → (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝐹) + 1)) → (♯‘𝐹) = (♯‘𝑊)))
215, 20syl5 34 1 (𝑊 ∈ Word (Vtx‘𝐺) → (⟨𝐹, (𝑊 ++ ⟨“(𝑊‘0)”⟩)⟩ ∈ (Walks‘𝐺) → (♯‘𝐹) = (♯‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cop 4632   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158  0cn0 12526  chash 14369  Word cword 14552   ++ cconcat 14608  ⟨“cs1 14633  Vtxcvtx 29013  Walkscwlks 29614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-wlks 29617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator