![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 9fppr8 | Structured version Visualization version GIF version |
Description: 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.) |
Ref | Expression |
---|---|
9fppr8 | ⊢ 9 ∈ ( FPPr ‘8) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 12338 | . 2 ⊢ 8 ∈ ℕ | |
2 | 4z 12627 | . . . . 5 ⊢ 4 ∈ ℤ | |
3 | 9nn 12341 | . . . . . 6 ⊢ 9 ∈ ℕ | |
4 | 3 | nnzi 12617 | . . . . 5 ⊢ 9 ∈ ℤ |
5 | 4re 12327 | . . . . . 6 ⊢ 4 ∈ ℝ | |
6 | 9re 12342 | . . . . . 6 ⊢ 9 ∈ ℝ | |
7 | 4lt9 12446 | . . . . . 6 ⊢ 4 < 9 | |
8 | 5, 6, 7 | ltleii 11368 | . . . . 5 ⊢ 4 ≤ 9 |
9 | eluz2 12859 | . . . . 5 ⊢ (9 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ 9 ∈ ℤ ∧ 4 ≤ 9)) | |
10 | 2, 4, 8, 9 | mpbir3an 1339 | . . . 4 ⊢ 9 ∈ (ℤ≥‘4) |
11 | 2z 12625 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
12 | 3z 12626 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
13 | 2re 12317 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
14 | 3re 12323 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
15 | 2lt3 12415 | . . . . . . . 8 ⊢ 2 < 3 | |
16 | 13, 14, 15 | ltleii 11368 | . . . . . . 7 ⊢ 2 ≤ 3 |
17 | eluz2 12859 | . . . . . . 7 ⊢ (3 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3)) | |
18 | 11, 12, 16, 17 | mpbir3an 1339 | . . . . . 6 ⊢ 3 ∈ (ℤ≥‘2) |
19 | nprm 16659 | . . . . . 6 ⊢ ((3 ∈ (ℤ≥‘2) ∧ 3 ∈ (ℤ≥‘2)) → ¬ (3 · 3) ∈ ℙ) | |
20 | 18, 18, 19 | mp2an 691 | . . . . 5 ⊢ ¬ (3 · 3) ∈ ℙ |
21 | df-nel 3044 | . . . . . 6 ⊢ (9 ∉ ℙ ↔ ¬ 9 ∈ ℙ) | |
22 | 3t3e9 12410 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
23 | 22 | eqcomi 2737 | . . . . . . 7 ⊢ 9 = (3 · 3) |
24 | 23 | eleq1i 2820 | . . . . . 6 ⊢ (9 ∈ ℙ ↔ (3 · 3) ∈ ℙ) |
25 | 21, 24 | xchbinx 334 | . . . . 5 ⊢ (9 ∉ ℙ ↔ ¬ (3 · 3) ∈ ℙ) |
26 | 20, 25 | mpbir 230 | . . . 4 ⊢ 9 ∉ ℙ |
27 | 9m1e8 12377 | . . . . . . 7 ⊢ (9 − 1) = 8 | |
28 | 27 | oveq2i 7431 | . . . . . 6 ⊢ (8↑(9 − 1)) = (8↑8) |
29 | 28 | oveq1i 7430 | . . . . 5 ⊢ ((8↑(9 − 1)) mod 9) = ((8↑8) mod 9) |
30 | 8exp8mod9 47076 | . . . . 5 ⊢ ((8↑8) mod 9) = 1 | |
31 | 29, 30 | eqtri 2756 | . . . 4 ⊢ ((8↑(9 − 1)) mod 9) = 1 |
32 | 10, 26, 31 | 3pm3.2i 1337 | . . 3 ⊢ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1) |
33 | fpprel 47068 | . . 3 ⊢ (8 ∈ ℕ → (9 ∈ ( FPPr ‘8) ↔ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1))) | |
34 | 32, 33 | mpbiri 258 | . 2 ⊢ (8 ∈ ℕ → 9 ∈ ( FPPr ‘8)) |
35 | 1, 34 | ax-mp 5 | 1 ⊢ 9 ∈ ( FPPr ‘8) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∉ wnel 3043 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 1c1 11140 · cmul 11144 ≤ cle 11280 − cmin 11475 ℕcn 12243 2c2 12298 3c3 12299 4c4 12300 8c8 12304 9c9 12305 ℤcz 12589 ℤ≥cuz 12853 mod cmo 13867 ↑cexp 14059 ℙcprime 16642 FPPr cfppr 47064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9466 df-inf 9467 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-rp 13008 df-fl 13790 df-mod 13868 df-seq 14000 df-exp 14060 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-dvds 16232 df-prm 16643 df-fppr 47065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |