| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 9fppr8 | Structured version Visualization version GIF version | ||
| Description: 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.) |
| Ref | Expression |
|---|---|
| 9fppr8 | ⊢ 9 ∈ ( FPPr ‘8) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 12335 | . 2 ⊢ 8 ∈ ℕ | |
| 2 | 4z 12626 | . . . . 5 ⊢ 4 ∈ ℤ | |
| 3 | 9nn 12338 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 4 | 3 | nnzi 12616 | . . . . 5 ⊢ 9 ∈ ℤ |
| 5 | 4re 12324 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 6 | 9re 12339 | . . . . . 6 ⊢ 9 ∈ ℝ | |
| 7 | 4lt9 12443 | . . . . . 6 ⊢ 4 < 9 | |
| 8 | 5, 6, 7 | ltleii 11358 | . . . . 5 ⊢ 4 ≤ 9 |
| 9 | eluz2 12858 | . . . . 5 ⊢ (9 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ 9 ∈ ℤ ∧ 4 ≤ 9)) | |
| 10 | 2, 4, 8, 9 | mpbir3an 1342 | . . . 4 ⊢ 9 ∈ (ℤ≥‘4) |
| 11 | 2z 12624 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 12 | 3z 12625 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
| 13 | 2re 12314 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 14 | 3re 12320 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 15 | 2lt3 12412 | . . . . . . . 8 ⊢ 2 < 3 | |
| 16 | 13, 14, 15 | ltleii 11358 | . . . . . . 7 ⊢ 2 ≤ 3 |
| 17 | eluz2 12858 | . . . . . . 7 ⊢ (3 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3)) | |
| 18 | 11, 12, 16, 17 | mpbir3an 1342 | . . . . . 6 ⊢ 3 ∈ (ℤ≥‘2) |
| 19 | nprm 16707 | . . . . . 6 ⊢ ((3 ∈ (ℤ≥‘2) ∧ 3 ∈ (ℤ≥‘2)) → ¬ (3 · 3) ∈ ℙ) | |
| 20 | 18, 18, 19 | mp2an 692 | . . . . 5 ⊢ ¬ (3 · 3) ∈ ℙ |
| 21 | df-nel 3037 | . . . . . 6 ⊢ (9 ∉ ℙ ↔ ¬ 9 ∈ ℙ) | |
| 22 | 3t3e9 12407 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
| 23 | 22 | eqcomi 2744 | . . . . . . 7 ⊢ 9 = (3 · 3) |
| 24 | 23 | eleq1i 2825 | . . . . . 6 ⊢ (9 ∈ ℙ ↔ (3 · 3) ∈ ℙ) |
| 25 | 21, 24 | xchbinx 334 | . . . . 5 ⊢ (9 ∉ ℙ ↔ ¬ (3 · 3) ∈ ℙ) |
| 26 | 20, 25 | mpbir 231 | . . . 4 ⊢ 9 ∉ ℙ |
| 27 | 9m1e8 12374 | . . . . . . 7 ⊢ (9 − 1) = 8 | |
| 28 | 27 | oveq2i 7416 | . . . . . 6 ⊢ (8↑(9 − 1)) = (8↑8) |
| 29 | 28 | oveq1i 7415 | . . . . 5 ⊢ ((8↑(9 − 1)) mod 9) = ((8↑8) mod 9) |
| 30 | 8exp8mod9 47750 | . . . . 5 ⊢ ((8↑8) mod 9) = 1 | |
| 31 | 29, 30 | eqtri 2758 | . . . 4 ⊢ ((8↑(9 − 1)) mod 9) = 1 |
| 32 | 10, 26, 31 | 3pm3.2i 1340 | . . 3 ⊢ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1) |
| 33 | fpprel 47742 | . . 3 ⊢ (8 ∈ ℕ → (9 ∈ ( FPPr ‘8) ↔ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1))) | |
| 34 | 32, 33 | mpbiri 258 | . 2 ⊢ (8 ∈ ℕ → 9 ∈ ( FPPr ‘8)) |
| 35 | 1, 34 | ax-mp 5 | 1 ⊢ 9 ∈ ( FPPr ‘8) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∉ wnel 3036 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 1c1 11130 · cmul 11134 ≤ cle 11270 − cmin 11466 ℕcn 12240 2c2 12295 3c3 12296 4c4 12297 8c8 12301 9c9 12302 ℤcz 12588 ℤ≥cuz 12852 mod cmo 13886 ↑cexp 14079 ℙcprime 16690 FPPr cfppr 47738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-prm 16691 df-fppr 47739 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |