| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 9fppr8 | Structured version Visualization version GIF version | ||
| Description: 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.) |
| Ref | Expression |
|---|---|
| 9fppr8 | ⊢ 9 ∈ ( FPPr ‘8) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 12281 | . 2 ⊢ 8 ∈ ℕ | |
| 2 | 4z 12567 | . . . . 5 ⊢ 4 ∈ ℤ | |
| 3 | 9nn 12284 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 4 | 3 | nnzi 12557 | . . . . 5 ⊢ 9 ∈ ℤ |
| 5 | 4re 12270 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 6 | 9re 12285 | . . . . . 6 ⊢ 9 ∈ ℝ | |
| 7 | 4lt9 12384 | . . . . . 6 ⊢ 4 < 9 | |
| 8 | 5, 6, 7 | ltleii 11297 | . . . . 5 ⊢ 4 ≤ 9 |
| 9 | eluz2 12799 | . . . . 5 ⊢ (9 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ 9 ∈ ℤ ∧ 4 ≤ 9)) | |
| 10 | 2, 4, 8, 9 | mpbir3an 1342 | . . . 4 ⊢ 9 ∈ (ℤ≥‘4) |
| 11 | 2z 12565 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 12 | 3z 12566 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
| 13 | 2re 12260 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 14 | 3re 12266 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 15 | 2lt3 12353 | . . . . . . . 8 ⊢ 2 < 3 | |
| 16 | 13, 14, 15 | ltleii 11297 | . . . . . . 7 ⊢ 2 ≤ 3 |
| 17 | eluz2 12799 | . . . . . . 7 ⊢ (3 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3)) | |
| 18 | 11, 12, 16, 17 | mpbir3an 1342 | . . . . . 6 ⊢ 3 ∈ (ℤ≥‘2) |
| 19 | nprm 16658 | . . . . . 6 ⊢ ((3 ∈ (ℤ≥‘2) ∧ 3 ∈ (ℤ≥‘2)) → ¬ (3 · 3) ∈ ℙ) | |
| 20 | 18, 18, 19 | mp2an 692 | . . . . 5 ⊢ ¬ (3 · 3) ∈ ℙ |
| 21 | df-nel 3030 | . . . . . 6 ⊢ (9 ∉ ℙ ↔ ¬ 9 ∈ ℙ) | |
| 22 | 3t3e9 12348 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
| 23 | 22 | eqcomi 2738 | . . . . . . 7 ⊢ 9 = (3 · 3) |
| 24 | 23 | eleq1i 2819 | . . . . . 6 ⊢ (9 ∈ ℙ ↔ (3 · 3) ∈ ℙ) |
| 25 | 21, 24 | xchbinx 334 | . . . . 5 ⊢ (9 ∉ ℙ ↔ ¬ (3 · 3) ∈ ℙ) |
| 26 | 20, 25 | mpbir 231 | . . . 4 ⊢ 9 ∉ ℙ |
| 27 | 9m1e8 12315 | . . . . . . 7 ⊢ (9 − 1) = 8 | |
| 28 | 27 | oveq2i 7398 | . . . . . 6 ⊢ (8↑(9 − 1)) = (8↑8) |
| 29 | 28 | oveq1i 7397 | . . . . 5 ⊢ ((8↑(9 − 1)) mod 9) = ((8↑8) mod 9) |
| 30 | 8exp8mod9 47737 | . . . . 5 ⊢ ((8↑8) mod 9) = 1 | |
| 31 | 29, 30 | eqtri 2752 | . . . 4 ⊢ ((8↑(9 − 1)) mod 9) = 1 |
| 32 | 10, 26, 31 | 3pm3.2i 1340 | . . 3 ⊢ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1) |
| 33 | fpprel 47729 | . . 3 ⊢ (8 ∈ ℕ → (9 ∈ ( FPPr ‘8) ↔ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1))) | |
| 34 | 32, 33 | mpbiri 258 | . 2 ⊢ (8 ∈ ℕ → 9 ∈ ( FPPr ‘8)) |
| 35 | 1, 34 | ax-mp 5 | 1 ⊢ 9 ∈ ( FPPr ‘8) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 1c1 11069 · cmul 11073 ≤ cle 11209 − cmin 11405 ℕcn 12186 2c2 12241 3c3 12242 4c4 12243 8c8 12247 9c9 12248 ℤcz 12529 ℤ≥cuz 12793 mod cmo 13831 ↑cexp 14026 ℙcprime 16641 FPPr cfppr 47725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-prm 16642 df-fppr 47726 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |