| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 9fppr8 | Structured version Visualization version GIF version | ||
| Description: 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.) |
| Ref | Expression |
|---|---|
| 9fppr8 | ⊢ 9 ∈ ( FPPr ‘8) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 12223 | . 2 ⊢ 8 ∈ ℕ | |
| 2 | 4z 12509 | . . . . 5 ⊢ 4 ∈ ℤ | |
| 3 | 9nn 12226 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 4 | 3 | nnzi 12499 | . . . . 5 ⊢ 9 ∈ ℤ |
| 5 | 4re 12212 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 6 | 9re 12227 | . . . . . 6 ⊢ 9 ∈ ℝ | |
| 7 | 4lt9 12326 | . . . . . 6 ⊢ 4 < 9 | |
| 8 | 5, 6, 7 | ltleii 11239 | . . . . 5 ⊢ 4 ≤ 9 |
| 9 | eluz2 12741 | . . . . 5 ⊢ (9 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ 9 ∈ ℤ ∧ 4 ≤ 9)) | |
| 10 | 2, 4, 8, 9 | mpbir3an 1342 | . . . 4 ⊢ 9 ∈ (ℤ≥‘4) |
| 11 | 2z 12507 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 12 | 3z 12508 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
| 13 | 2re 12202 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 14 | 3re 12208 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 15 | 2lt3 12295 | . . . . . . . 8 ⊢ 2 < 3 | |
| 16 | 13, 14, 15 | ltleii 11239 | . . . . . . 7 ⊢ 2 ≤ 3 |
| 17 | eluz2 12741 | . . . . . . 7 ⊢ (3 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3)) | |
| 18 | 11, 12, 16, 17 | mpbir3an 1342 | . . . . . 6 ⊢ 3 ∈ (ℤ≥‘2) |
| 19 | nprm 16599 | . . . . . 6 ⊢ ((3 ∈ (ℤ≥‘2) ∧ 3 ∈ (ℤ≥‘2)) → ¬ (3 · 3) ∈ ℙ) | |
| 20 | 18, 18, 19 | mp2an 692 | . . . . 5 ⊢ ¬ (3 · 3) ∈ ℙ |
| 21 | df-nel 3030 | . . . . . 6 ⊢ (9 ∉ ℙ ↔ ¬ 9 ∈ ℙ) | |
| 22 | 3t3e9 12290 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
| 23 | 22 | eqcomi 2738 | . . . . . . 7 ⊢ 9 = (3 · 3) |
| 24 | 23 | eleq1i 2819 | . . . . . 6 ⊢ (9 ∈ ℙ ↔ (3 · 3) ∈ ℙ) |
| 25 | 21, 24 | xchbinx 334 | . . . . 5 ⊢ (9 ∉ ℙ ↔ ¬ (3 · 3) ∈ ℙ) |
| 26 | 20, 25 | mpbir 231 | . . . 4 ⊢ 9 ∉ ℙ |
| 27 | 9m1e8 12257 | . . . . . . 7 ⊢ (9 − 1) = 8 | |
| 28 | 27 | oveq2i 7360 | . . . . . 6 ⊢ (8↑(9 − 1)) = (8↑8) |
| 29 | 28 | oveq1i 7359 | . . . . 5 ⊢ ((8↑(9 − 1)) mod 9) = ((8↑8) mod 9) |
| 30 | 8exp8mod9 47730 | . . . . 5 ⊢ ((8↑8) mod 9) = 1 | |
| 31 | 29, 30 | eqtri 2752 | . . . 4 ⊢ ((8↑(9 − 1)) mod 9) = 1 |
| 32 | 10, 26, 31 | 3pm3.2i 1340 | . . 3 ⊢ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1) |
| 33 | fpprel 47722 | . . 3 ⊢ (8 ∈ ℕ → (9 ∈ ( FPPr ‘8) ↔ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1))) | |
| 34 | 32, 33 | mpbiri 258 | . 2 ⊢ (8 ∈ ℕ → 9 ∈ ( FPPr ‘8)) |
| 35 | 1, 34 | ax-mp 5 | 1 ⊢ 9 ∈ ( FPPr ‘8) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 1c1 11010 · cmul 11014 ≤ cle 11150 − cmin 11347 ℕcn 12128 2c2 12183 3c3 12184 4c4 12185 8c8 12189 9c9 12190 ℤcz 12471 ℤ≥cuz 12735 mod cmo 13773 ↑cexp 13968 ℙcprime 16582 FPPr cfppr 47718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-prm 16583 df-fppr 47719 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |