| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 9fppr8 | Structured version Visualization version GIF version | ||
| Description: 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.) |
| Ref | Expression |
|---|---|
| 9fppr8 | ⊢ 9 ∈ ( FPPr ‘8) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 12220 | . 2 ⊢ 8 ∈ ℕ | |
| 2 | 4z 12506 | . . . . 5 ⊢ 4 ∈ ℤ | |
| 3 | 9nn 12223 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 4 | 3 | nnzi 12496 | . . . . 5 ⊢ 9 ∈ ℤ |
| 5 | 4re 12209 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 6 | 9re 12224 | . . . . . 6 ⊢ 9 ∈ ℝ | |
| 7 | 4lt9 12323 | . . . . . 6 ⊢ 4 < 9 | |
| 8 | 5, 6, 7 | ltleii 11236 | . . . . 5 ⊢ 4 ≤ 9 |
| 9 | eluz2 12738 | . . . . 5 ⊢ (9 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ 9 ∈ ℤ ∧ 4 ≤ 9)) | |
| 10 | 2, 4, 8, 9 | mpbir3an 1342 | . . . 4 ⊢ 9 ∈ (ℤ≥‘4) |
| 11 | 2z 12504 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 12 | 3z 12505 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
| 13 | 2re 12199 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 14 | 3re 12205 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 15 | 2lt3 12292 | . . . . . . . 8 ⊢ 2 < 3 | |
| 16 | 13, 14, 15 | ltleii 11236 | . . . . . . 7 ⊢ 2 ≤ 3 |
| 17 | eluz2 12738 | . . . . . . 7 ⊢ (3 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3)) | |
| 18 | 11, 12, 16, 17 | mpbir3an 1342 | . . . . . 6 ⊢ 3 ∈ (ℤ≥‘2) |
| 19 | nprm 16599 | . . . . . 6 ⊢ ((3 ∈ (ℤ≥‘2) ∧ 3 ∈ (ℤ≥‘2)) → ¬ (3 · 3) ∈ ℙ) | |
| 20 | 18, 18, 19 | mp2an 692 | . . . . 5 ⊢ ¬ (3 · 3) ∈ ℙ |
| 21 | df-nel 3033 | . . . . . 6 ⊢ (9 ∉ ℙ ↔ ¬ 9 ∈ ℙ) | |
| 22 | 3t3e9 12287 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
| 23 | 22 | eqcomi 2740 | . . . . . . 7 ⊢ 9 = (3 · 3) |
| 24 | 23 | eleq1i 2822 | . . . . . 6 ⊢ (9 ∈ ℙ ↔ (3 · 3) ∈ ℙ) |
| 25 | 21, 24 | xchbinx 334 | . . . . 5 ⊢ (9 ∉ ℙ ↔ ¬ (3 · 3) ∈ ℙ) |
| 26 | 20, 25 | mpbir 231 | . . . 4 ⊢ 9 ∉ ℙ |
| 27 | 9m1e8 12254 | . . . . . . 7 ⊢ (9 − 1) = 8 | |
| 28 | 27 | oveq2i 7357 | . . . . . 6 ⊢ (8↑(9 − 1)) = (8↑8) |
| 29 | 28 | oveq1i 7356 | . . . . 5 ⊢ ((8↑(9 − 1)) mod 9) = ((8↑8) mod 9) |
| 30 | 8exp8mod9 47846 | . . . . 5 ⊢ ((8↑8) mod 9) = 1 | |
| 31 | 29, 30 | eqtri 2754 | . . . 4 ⊢ ((8↑(9 − 1)) mod 9) = 1 |
| 32 | 10, 26, 31 | 3pm3.2i 1340 | . . 3 ⊢ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1) |
| 33 | fpprel 47838 | . . 3 ⊢ (8 ∈ ℕ → (9 ∈ ( FPPr ‘8) ↔ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1))) | |
| 34 | 32, 33 | mpbiri 258 | . 2 ⊢ (8 ∈ ℕ → 9 ∈ ( FPPr ‘8)) |
| 35 | 1, 34 | ax-mp 5 | 1 ⊢ 9 ∈ ( FPPr ‘8) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 1c1 11007 · cmul 11011 ≤ cle 11147 − cmin 11344 ℕcn 12125 2c2 12180 3c3 12181 4c4 12182 8c8 12186 9c9 12187 ℤcz 12468 ℤ≥cuz 12732 mod cmo 13773 ↑cexp 13968 ℙcprime 16582 FPPr cfppr 47834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-prm 16583 df-fppr 47835 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |