Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 9fppr8 | Structured version Visualization version GIF version |
Description: 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.) |
Ref | Expression |
---|---|
9fppr8 | ⊢ 9 ∈ ( FPPr ‘8) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 11998 | . 2 ⊢ 8 ∈ ℕ | |
2 | 4z 12284 | . . . . 5 ⊢ 4 ∈ ℤ | |
3 | 9nn 12001 | . . . . . 6 ⊢ 9 ∈ ℕ | |
4 | 3 | nnzi 12274 | . . . . 5 ⊢ 9 ∈ ℤ |
5 | 4re 11987 | . . . . . 6 ⊢ 4 ∈ ℝ | |
6 | 9re 12002 | . . . . . 6 ⊢ 9 ∈ ℝ | |
7 | 4lt9 12106 | . . . . . 6 ⊢ 4 < 9 | |
8 | 5, 6, 7 | ltleii 11028 | . . . . 5 ⊢ 4 ≤ 9 |
9 | eluz2 12517 | . . . . 5 ⊢ (9 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ 9 ∈ ℤ ∧ 4 ≤ 9)) | |
10 | 2, 4, 8, 9 | mpbir3an 1339 | . . . 4 ⊢ 9 ∈ (ℤ≥‘4) |
11 | 2z 12282 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
12 | 3z 12283 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
13 | 2re 11977 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
14 | 3re 11983 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
15 | 2lt3 12075 | . . . . . . . 8 ⊢ 2 < 3 | |
16 | 13, 14, 15 | ltleii 11028 | . . . . . . 7 ⊢ 2 ≤ 3 |
17 | eluz2 12517 | . . . . . . 7 ⊢ (3 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3)) | |
18 | 11, 12, 16, 17 | mpbir3an 1339 | . . . . . 6 ⊢ 3 ∈ (ℤ≥‘2) |
19 | nprm 16321 | . . . . . 6 ⊢ ((3 ∈ (ℤ≥‘2) ∧ 3 ∈ (ℤ≥‘2)) → ¬ (3 · 3) ∈ ℙ) | |
20 | 18, 18, 19 | mp2an 688 | . . . . 5 ⊢ ¬ (3 · 3) ∈ ℙ |
21 | df-nel 3049 | . . . . . 6 ⊢ (9 ∉ ℙ ↔ ¬ 9 ∈ ℙ) | |
22 | 3t3e9 12070 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
23 | 22 | eqcomi 2747 | . . . . . . 7 ⊢ 9 = (3 · 3) |
24 | 23 | eleq1i 2829 | . . . . . 6 ⊢ (9 ∈ ℙ ↔ (3 · 3) ∈ ℙ) |
25 | 21, 24 | xchbinx 333 | . . . . 5 ⊢ (9 ∉ ℙ ↔ ¬ (3 · 3) ∈ ℙ) |
26 | 20, 25 | mpbir 230 | . . . 4 ⊢ 9 ∉ ℙ |
27 | 9m1e8 12037 | . . . . . . 7 ⊢ (9 − 1) = 8 | |
28 | 27 | oveq2i 7266 | . . . . . 6 ⊢ (8↑(9 − 1)) = (8↑8) |
29 | 28 | oveq1i 7265 | . . . . 5 ⊢ ((8↑(9 − 1)) mod 9) = ((8↑8) mod 9) |
30 | 8exp8mod9 45076 | . . . . 5 ⊢ ((8↑8) mod 9) = 1 | |
31 | 29, 30 | eqtri 2766 | . . . 4 ⊢ ((8↑(9 − 1)) mod 9) = 1 |
32 | 10, 26, 31 | 3pm3.2i 1337 | . . 3 ⊢ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1) |
33 | fpprel 45068 | . . 3 ⊢ (8 ∈ ℕ → (9 ∈ ( FPPr ‘8) ↔ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1))) | |
34 | 32, 33 | mpbiri 257 | . 2 ⊢ (8 ∈ ℕ → 9 ∈ ( FPPr ‘8)) |
35 | 1, 34 | ax-mp 5 | 1 ⊢ 9 ∈ ( FPPr ‘8) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 1c1 10803 · cmul 10807 ≤ cle 10941 − cmin 11135 ℕcn 11903 2c2 11958 3c3 11959 4c4 11960 8c8 11964 9c9 11965 ℤcz 12249 ℤ≥cuz 12511 mod cmo 13517 ↑cexp 13710 ℙcprime 16304 FPPr cfppr 45064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-prm 16305 df-fppr 45065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |