Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  9fppr8 Structured version   Visualization version   GIF version

Theorem 9fppr8 44253
Description: 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.)
Assertion
Ref Expression
9fppr8 9 ∈ ( FPPr ‘8)

Proof of Theorem 9fppr8
StepHypRef Expression
1 8nn 11720 . 2 8 ∈ ℕ
2 4z 12004 . . . . 5 4 ∈ ℤ
3 9nn 11723 . . . . . 6 9 ∈ ℕ
43nnzi 11994 . . . . 5 9 ∈ ℤ
5 4re 11709 . . . . . 6 4 ∈ ℝ
6 9re 11724 . . . . . 6 9 ∈ ℝ
7 4lt9 11828 . . . . . 6 4 < 9
85, 6, 7ltleii 10752 . . . . 5 4 ≤ 9
9 eluz2 12237 . . . . 5 (9 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 9 ∈ ℤ ∧ 4 ≤ 9))
102, 4, 8, 9mpbir3an 1338 . . . 4 9 ∈ (ℤ‘4)
11 2z 12002 . . . . . . 7 2 ∈ ℤ
12 3z 12003 . . . . . . 7 3 ∈ ℤ
13 2re 11699 . . . . . . . 8 2 ∈ ℝ
14 3re 11705 . . . . . . . 8 3 ∈ ℝ
15 2lt3 11797 . . . . . . . 8 2 < 3
1613, 14, 15ltleii 10752 . . . . . . 7 2 ≤ 3
17 eluz2 12237 . . . . . . 7 (3 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3))
1811, 12, 16, 17mpbir3an 1338 . . . . . 6 3 ∈ (ℤ‘2)
19 nprm 16022 . . . . . 6 ((3 ∈ (ℤ‘2) ∧ 3 ∈ (ℤ‘2)) → ¬ (3 · 3) ∈ ℙ)
2018, 18, 19mp2an 691 . . . . 5 ¬ (3 · 3) ∈ ℙ
21 df-nel 3092 . . . . . 6 (9 ∉ ℙ ↔ ¬ 9 ∈ ℙ)
22 3t3e9 11792 . . . . . . . 8 (3 · 3) = 9
2322eqcomi 2807 . . . . . . 7 9 = (3 · 3)
2423eleq1i 2880 . . . . . 6 (9 ∈ ℙ ↔ (3 · 3) ∈ ℙ)
2521, 24xchbinx 337 . . . . 5 (9 ∉ ℙ ↔ ¬ (3 · 3) ∈ ℙ)
2620, 25mpbir 234 . . . 4 9 ∉ ℙ
27 9m1e8 11759 . . . . . . 7 (9 − 1) = 8
2827oveq2i 7146 . . . . . 6 (8↑(9 − 1)) = (8↑8)
2928oveq1i 7145 . . . . 5 ((8↑(9 − 1)) mod 9) = ((8↑8) mod 9)
30 8exp8mod9 44252 . . . . 5 ((8↑8) mod 9) = 1
3129, 30eqtri 2821 . . . 4 ((8↑(9 − 1)) mod 9) = 1
3210, 26, 313pm3.2i 1336 . . 3 (9 ∈ (ℤ‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1)
33 fpprel 44244 . . 3 (8 ∈ ℕ → (9 ∈ ( FPPr ‘8) ↔ (9 ∈ (ℤ‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1)))
3432, 33mpbiri 261 . 2 (8 ∈ ℕ → 9 ∈ ( FPPr ‘8))
351, 34ax-mp 5 1 9 ∈ ( FPPr ‘8)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3a 1084   = wceq 1538  wcel 2111  wnel 3091   class class class wbr 5030  cfv 6324  (class class class)co 7135  1c1 10527   · cmul 10531  cle 10665  cmin 10859  cn 11625  2c2 11680  3c3 11681  4c4 11682  8c8 11686  9c9 11687  cz 11969  cuz 12231   mod cmo 13232  cexp 13425  cprime 16005   FPPr cfppr 44240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16006  df-fppr 44241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator