| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 9fppr8 | Structured version Visualization version GIF version | ||
| Description: 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.) |
| Ref | Expression |
|---|---|
| 9fppr8 | ⊢ 9 ∈ ( FPPr ‘8) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 12288 | . 2 ⊢ 8 ∈ ℕ | |
| 2 | 4z 12574 | . . . . 5 ⊢ 4 ∈ ℤ | |
| 3 | 9nn 12291 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 4 | 3 | nnzi 12564 | . . . . 5 ⊢ 9 ∈ ℤ |
| 5 | 4re 12277 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 6 | 9re 12292 | . . . . . 6 ⊢ 9 ∈ ℝ | |
| 7 | 4lt9 12391 | . . . . . 6 ⊢ 4 < 9 | |
| 8 | 5, 6, 7 | ltleii 11304 | . . . . 5 ⊢ 4 ≤ 9 |
| 9 | eluz2 12806 | . . . . 5 ⊢ (9 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ 9 ∈ ℤ ∧ 4 ≤ 9)) | |
| 10 | 2, 4, 8, 9 | mpbir3an 1342 | . . . 4 ⊢ 9 ∈ (ℤ≥‘4) |
| 11 | 2z 12572 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 12 | 3z 12573 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
| 13 | 2re 12267 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 14 | 3re 12273 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 15 | 2lt3 12360 | . . . . . . . 8 ⊢ 2 < 3 | |
| 16 | 13, 14, 15 | ltleii 11304 | . . . . . . 7 ⊢ 2 ≤ 3 |
| 17 | eluz2 12806 | . . . . . . 7 ⊢ (3 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3)) | |
| 18 | 11, 12, 16, 17 | mpbir3an 1342 | . . . . . 6 ⊢ 3 ∈ (ℤ≥‘2) |
| 19 | nprm 16665 | . . . . . 6 ⊢ ((3 ∈ (ℤ≥‘2) ∧ 3 ∈ (ℤ≥‘2)) → ¬ (3 · 3) ∈ ℙ) | |
| 20 | 18, 18, 19 | mp2an 692 | . . . . 5 ⊢ ¬ (3 · 3) ∈ ℙ |
| 21 | df-nel 3031 | . . . . . 6 ⊢ (9 ∉ ℙ ↔ ¬ 9 ∈ ℙ) | |
| 22 | 3t3e9 12355 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
| 23 | 22 | eqcomi 2739 | . . . . . . 7 ⊢ 9 = (3 · 3) |
| 24 | 23 | eleq1i 2820 | . . . . . 6 ⊢ (9 ∈ ℙ ↔ (3 · 3) ∈ ℙ) |
| 25 | 21, 24 | xchbinx 334 | . . . . 5 ⊢ (9 ∉ ℙ ↔ ¬ (3 · 3) ∈ ℙ) |
| 26 | 20, 25 | mpbir 231 | . . . 4 ⊢ 9 ∉ ℙ |
| 27 | 9m1e8 12322 | . . . . . . 7 ⊢ (9 − 1) = 8 | |
| 28 | 27 | oveq2i 7401 | . . . . . 6 ⊢ (8↑(9 − 1)) = (8↑8) |
| 29 | 28 | oveq1i 7400 | . . . . 5 ⊢ ((8↑(9 − 1)) mod 9) = ((8↑8) mod 9) |
| 30 | 8exp8mod9 47741 | . . . . 5 ⊢ ((8↑8) mod 9) = 1 | |
| 31 | 29, 30 | eqtri 2753 | . . . 4 ⊢ ((8↑(9 − 1)) mod 9) = 1 |
| 32 | 10, 26, 31 | 3pm3.2i 1340 | . . 3 ⊢ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1) |
| 33 | fpprel 47733 | . . 3 ⊢ (8 ∈ ℕ → (9 ∈ ( FPPr ‘8) ↔ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1))) | |
| 34 | 32, 33 | mpbiri 258 | . 2 ⊢ (8 ∈ ℕ → 9 ∈ ( FPPr ‘8)) |
| 35 | 1, 34 | ax-mp 5 | 1 ⊢ 9 ∈ ( FPPr ‘8) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∉ wnel 3030 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 1c1 11076 · cmul 11080 ≤ cle 11216 − cmin 11412 ℕcn 12193 2c2 12248 3c3 12249 4c4 12250 8c8 12254 9c9 12255 ℤcz 12536 ℤ≥cuz 12800 mod cmo 13838 ↑cexp 14033 ℙcprime 16648 FPPr cfppr 47729 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-prm 16649 df-fppr 47730 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |