![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 9fppr8 | Structured version Visualization version GIF version |
Description: 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.) |
Ref | Expression |
---|---|
9fppr8 | ⊢ 9 ∈ ( FPPr ‘8) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 12388 | . 2 ⊢ 8 ∈ ℕ | |
2 | 4z 12677 | . . . . 5 ⊢ 4 ∈ ℤ | |
3 | 9nn 12391 | . . . . . 6 ⊢ 9 ∈ ℕ | |
4 | 3 | nnzi 12667 | . . . . 5 ⊢ 9 ∈ ℤ |
5 | 4re 12377 | . . . . . 6 ⊢ 4 ∈ ℝ | |
6 | 9re 12392 | . . . . . 6 ⊢ 9 ∈ ℝ | |
7 | 4lt9 12496 | . . . . . 6 ⊢ 4 < 9 | |
8 | 5, 6, 7 | ltleii 11413 | . . . . 5 ⊢ 4 ≤ 9 |
9 | eluz2 12909 | . . . . 5 ⊢ (9 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ 9 ∈ ℤ ∧ 4 ≤ 9)) | |
10 | 2, 4, 8, 9 | mpbir3an 1341 | . . . 4 ⊢ 9 ∈ (ℤ≥‘4) |
11 | 2z 12675 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
12 | 3z 12676 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
13 | 2re 12367 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
14 | 3re 12373 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
15 | 2lt3 12465 | . . . . . . . 8 ⊢ 2 < 3 | |
16 | 13, 14, 15 | ltleii 11413 | . . . . . . 7 ⊢ 2 ≤ 3 |
17 | eluz2 12909 | . . . . . . 7 ⊢ (3 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3)) | |
18 | 11, 12, 16, 17 | mpbir3an 1341 | . . . . . 6 ⊢ 3 ∈ (ℤ≥‘2) |
19 | nprm 16735 | . . . . . 6 ⊢ ((3 ∈ (ℤ≥‘2) ∧ 3 ∈ (ℤ≥‘2)) → ¬ (3 · 3) ∈ ℙ) | |
20 | 18, 18, 19 | mp2an 691 | . . . . 5 ⊢ ¬ (3 · 3) ∈ ℙ |
21 | df-nel 3053 | . . . . . 6 ⊢ (9 ∉ ℙ ↔ ¬ 9 ∈ ℙ) | |
22 | 3t3e9 12460 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
23 | 22 | eqcomi 2749 | . . . . . . 7 ⊢ 9 = (3 · 3) |
24 | 23 | eleq1i 2835 | . . . . . 6 ⊢ (9 ∈ ℙ ↔ (3 · 3) ∈ ℙ) |
25 | 21, 24 | xchbinx 334 | . . . . 5 ⊢ (9 ∉ ℙ ↔ ¬ (3 · 3) ∈ ℙ) |
26 | 20, 25 | mpbir 231 | . . . 4 ⊢ 9 ∉ ℙ |
27 | 9m1e8 12427 | . . . . . . 7 ⊢ (9 − 1) = 8 | |
28 | 27 | oveq2i 7459 | . . . . . 6 ⊢ (8↑(9 − 1)) = (8↑8) |
29 | 28 | oveq1i 7458 | . . . . 5 ⊢ ((8↑(9 − 1)) mod 9) = ((8↑8) mod 9) |
30 | 8exp8mod9 47610 | . . . . 5 ⊢ ((8↑8) mod 9) = 1 | |
31 | 29, 30 | eqtri 2768 | . . . 4 ⊢ ((8↑(9 − 1)) mod 9) = 1 |
32 | 10, 26, 31 | 3pm3.2i 1339 | . . 3 ⊢ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1) |
33 | fpprel 47602 | . . 3 ⊢ (8 ∈ ℕ → (9 ∈ ( FPPr ‘8) ↔ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1))) | |
34 | 32, 33 | mpbiri 258 | . 2 ⊢ (8 ∈ ℕ → 9 ∈ ( FPPr ‘8)) |
35 | 1, 34 | ax-mp 5 | 1 ⊢ 9 ∈ ( FPPr ‘8) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∉ wnel 3052 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 1c1 11185 · cmul 11189 ≤ cle 11325 − cmin 11520 ℕcn 12293 2c2 12348 3c3 12349 4c4 12350 8c8 12354 9c9 12355 ℤcz 12639 ℤ≥cuz 12903 mod cmo 13920 ↑cexp 14112 ℙcprime 16718 FPPr cfppr 47598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-prm 16719 df-fppr 47599 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |