![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 9fppr8 | Structured version Visualization version GIF version |
Description: 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.) |
Ref | Expression |
---|---|
9fppr8 | ⊢ 9 ∈ ( FPPr ‘8) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 12308 | . 2 ⊢ 8 ∈ ℕ | |
2 | 4z 12597 | . . . . 5 ⊢ 4 ∈ ℤ | |
3 | 9nn 12311 | . . . . . 6 ⊢ 9 ∈ ℕ | |
4 | 3 | nnzi 12587 | . . . . 5 ⊢ 9 ∈ ℤ |
5 | 4re 12297 | . . . . . 6 ⊢ 4 ∈ ℝ | |
6 | 9re 12312 | . . . . . 6 ⊢ 9 ∈ ℝ | |
7 | 4lt9 12416 | . . . . . 6 ⊢ 4 < 9 | |
8 | 5, 6, 7 | ltleii 11338 | . . . . 5 ⊢ 4 ≤ 9 |
9 | eluz2 12829 | . . . . 5 ⊢ (9 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ 9 ∈ ℤ ∧ 4 ≤ 9)) | |
10 | 2, 4, 8, 9 | mpbir3an 1338 | . . . 4 ⊢ 9 ∈ (ℤ≥‘4) |
11 | 2z 12595 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
12 | 3z 12596 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
13 | 2re 12287 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
14 | 3re 12293 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
15 | 2lt3 12385 | . . . . . . . 8 ⊢ 2 < 3 | |
16 | 13, 14, 15 | ltleii 11338 | . . . . . . 7 ⊢ 2 ≤ 3 |
17 | eluz2 12829 | . . . . . . 7 ⊢ (3 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3)) | |
18 | 11, 12, 16, 17 | mpbir3an 1338 | . . . . . 6 ⊢ 3 ∈ (ℤ≥‘2) |
19 | nprm 16630 | . . . . . 6 ⊢ ((3 ∈ (ℤ≥‘2) ∧ 3 ∈ (ℤ≥‘2)) → ¬ (3 · 3) ∈ ℙ) | |
20 | 18, 18, 19 | mp2an 689 | . . . . 5 ⊢ ¬ (3 · 3) ∈ ℙ |
21 | df-nel 3041 | . . . . . 6 ⊢ (9 ∉ ℙ ↔ ¬ 9 ∈ ℙ) | |
22 | 3t3e9 12380 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
23 | 22 | eqcomi 2735 | . . . . . . 7 ⊢ 9 = (3 · 3) |
24 | 23 | eleq1i 2818 | . . . . . 6 ⊢ (9 ∈ ℙ ↔ (3 · 3) ∈ ℙ) |
25 | 21, 24 | xchbinx 334 | . . . . 5 ⊢ (9 ∉ ℙ ↔ ¬ (3 · 3) ∈ ℙ) |
26 | 20, 25 | mpbir 230 | . . . 4 ⊢ 9 ∉ ℙ |
27 | 9m1e8 12347 | . . . . . . 7 ⊢ (9 − 1) = 8 | |
28 | 27 | oveq2i 7415 | . . . . . 6 ⊢ (8↑(9 − 1)) = (8↑8) |
29 | 28 | oveq1i 7414 | . . . . 5 ⊢ ((8↑(9 − 1)) mod 9) = ((8↑8) mod 9) |
30 | 8exp8mod9 46957 | . . . . 5 ⊢ ((8↑8) mod 9) = 1 | |
31 | 29, 30 | eqtri 2754 | . . . 4 ⊢ ((8↑(9 − 1)) mod 9) = 1 |
32 | 10, 26, 31 | 3pm3.2i 1336 | . . 3 ⊢ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1) |
33 | fpprel 46949 | . . 3 ⊢ (8 ∈ ℕ → (9 ∈ ( FPPr ‘8) ↔ (9 ∈ (ℤ≥‘4) ∧ 9 ∉ ℙ ∧ ((8↑(9 − 1)) mod 9) = 1))) | |
34 | 32, 33 | mpbiri 258 | . 2 ⊢ (8 ∈ ℕ → 9 ∈ ( FPPr ‘8)) |
35 | 1, 34 | ax-mp 5 | 1 ⊢ 9 ∈ ( FPPr ‘8) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∉ wnel 3040 class class class wbr 5141 ‘cfv 6536 (class class class)co 7404 1c1 11110 · cmul 11114 ≤ cle 11250 − cmin 11445 ℕcn 12213 2c2 12268 3c3 12269 4c4 12270 8c8 12274 9c9 12275 ℤcz 12559 ℤ≥cuz 12823 mod cmo 13837 ↑cexp 14030 ℙcprime 16613 FPPr cfppr 46945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-rp 12978 df-fl 13760 df-mod 13838 df-seq 13970 df-exp 14031 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-dvds 16203 df-prm 16614 df-fppr 46946 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |