Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 341fppr2 | Structured version Visualization version GIF version |
Description: 341 is the (smallest) Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023.) |
Ref | Expression |
---|---|
341fppr2 | ⊢ ;;341 ∈ ( FPPr ‘2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4z 12363 | . . 3 ⊢ 4 ∈ ℤ | |
2 | 3nn0 12260 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
3 | 4nn0 12261 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
4 | 2, 3 | deccl 12461 | . . . . 5 ⊢ ;34 ∈ ℕ0 |
5 | 1nn 11993 | . . . . 5 ⊢ 1 ∈ ℕ | |
6 | 4, 5 | decnncl 12466 | . . . 4 ⊢ ;;341 ∈ ℕ |
7 | 6 | nnzi 12353 | . . 3 ⊢ ;;341 ∈ ℤ |
8 | 4nn 12065 | . . . . 5 ⊢ 4 ∈ ℕ | |
9 | 2, 8 | decnncl 12466 | . . . 4 ⊢ ;34 ∈ ℕ |
10 | 1nn0 12258 | . . . 4 ⊢ 1 ∈ ℕ0 | |
11 | 4re 12066 | . . . . 5 ⊢ 4 ∈ ℝ | |
12 | 9re 12081 | . . . . 5 ⊢ 9 ∈ ℝ | |
13 | 4lt9 12185 | . . . . 5 ⊢ 4 < 9 | |
14 | 11, 12, 13 | ltleii 11107 | . . . 4 ⊢ 4 ≤ 9 |
15 | 9, 10, 3, 14 | declei 12482 | . . 3 ⊢ 4 ≤ ;;341 |
16 | eluz2 12597 | . . 3 ⊢ (;;341 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ ;;341 ∈ ℤ ∧ 4 ≤ ;;341)) | |
17 | 1, 7, 15, 16 | mpbir3an 1340 | . 2 ⊢ ;;341 ∈ (ℤ≥‘4) |
18 | 2z 12361 | . . . . 5 ⊢ 2 ∈ ℤ | |
19 | 10, 5 | decnncl 12466 | . . . . . 6 ⊢ ;11 ∈ ℕ |
20 | 19 | nnzi 12353 | . . . . 5 ⊢ ;11 ∈ ℤ |
21 | 2nn0 12259 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
22 | 2re 12056 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
23 | 2lt9 12187 | . . . . . . 7 ⊢ 2 < 9 | |
24 | 22, 12, 23 | ltleii 11107 | . . . . . 6 ⊢ 2 ≤ 9 |
25 | 5, 10, 21, 24 | declei 12482 | . . . . 5 ⊢ 2 ≤ ;11 |
26 | eluz2 12597 | . . . . 5 ⊢ (;11 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;11 ∈ ℤ ∧ 2 ≤ ;11)) | |
27 | 18, 20, 25, 26 | mpbir3an 1340 | . . . 4 ⊢ ;11 ∈ (ℤ≥‘2) |
28 | 2, 5 | decnncl 12466 | . . . . . 6 ⊢ ;31 ∈ ℕ |
29 | 28 | nnzi 12353 | . . . . 5 ⊢ ;31 ∈ ℤ |
30 | 3nn 12061 | . . . . . 6 ⊢ 3 ∈ ℕ | |
31 | 30, 10, 21, 24 | declei 12482 | . . . . 5 ⊢ 2 ≤ ;31 |
32 | eluz2 12597 | . . . . 5 ⊢ (;31 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;31 ∈ ℤ ∧ 2 ≤ ;31)) | |
33 | 18, 29, 31, 32 | mpbir3an 1340 | . . . 4 ⊢ ;31 ∈ (ℤ≥‘2) |
34 | nprm 16402 | . . . 4 ⊢ ((;11 ∈ (ℤ≥‘2) ∧ ;31 ∈ (ℤ≥‘2)) → ¬ (;11 · ;31) ∈ ℙ) | |
35 | 27, 33, 34 | mp2an 689 | . . 3 ⊢ ¬ (;11 · ;31) ∈ ℙ |
36 | df-nel 3051 | . . . 4 ⊢ (;;341 ∉ ℙ ↔ ¬ ;;341 ∈ ℙ) | |
37 | 11t31e341 45195 | . . . . . 6 ⊢ (;11 · ;31) = ;;341 | |
38 | 37 | eqcomi 2748 | . . . . 5 ⊢ ;;341 = (;11 · ;31) |
39 | 38 | eleq1i 2830 | . . . 4 ⊢ (;;341 ∈ ℙ ↔ (;11 · ;31) ∈ ℙ) |
40 | 36, 39 | xchbinx 334 | . . 3 ⊢ (;;341 ∉ ℙ ↔ ¬ (;11 · ;31) ∈ ℙ) |
41 | 35, 40 | mpbir 230 | . 2 ⊢ ;;341 ∉ ℙ |
42 | eqid 2739 | . . . . . 6 ⊢ ;;341 = ;;341 | |
43 | eqid 2739 | . . . . . 6 ⊢ (;34 + 1) = (;34 + 1) | |
44 | 1m1e0 12054 | . . . . . 6 ⊢ (1 − 1) = 0 | |
45 | 4, 10, 10, 42, 43, 44 | decsubi 12509 | . . . . 5 ⊢ (;;341 − 1) = ;;340 |
46 | 45 | oveq2i 7295 | . . . 4 ⊢ (2↑(;;341 − 1)) = (2↑;;340) |
47 | 46 | oveq1i 7294 | . . 3 ⊢ ((2↑(;;341 − 1)) mod ;;341) = ((2↑;;340) mod ;;341) |
48 | 2exp340mod341 45196 | . . 3 ⊢ ((2↑;;340) mod ;;341) = 1 | |
49 | 47, 48 | eqtri 2767 | . 2 ⊢ ((2↑(;;341 − 1)) mod ;;341) = 1 |
50 | 2nn 12055 | . . 3 ⊢ 2 ∈ ℕ | |
51 | fpprel 45191 | . . 3 ⊢ (2 ∈ ℕ → (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1))) | |
52 | 50, 51 | ax-mp 5 | . 2 ⊢ (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1)) |
53 | 17, 41, 49, 52 | mpbir3an 1340 | 1 ⊢ ;;341 ∈ ( FPPr ‘2) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∉ wnel 3050 class class class wbr 5075 ‘cfv 6437 (class class class)co 7284 0cc0 10880 1c1 10881 + caddc 10883 · cmul 10885 ≤ cle 11019 − cmin 11214 ℕcn 11982 2c2 12037 3c3 12038 4c4 12039 9c9 12044 ℤcz 12328 ;cdc 12446 ℤ≥cuz 12591 mod cmo 13598 ↑cexp 13791 ℙcprime 16385 FPPr cfppr 45187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-pre-sup 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-2o 8307 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-sup 9210 df-inf 9211 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 df-9 12052 df-n0 12243 df-z 12329 df-dec 12447 df-uz 12592 df-rp 12740 df-fl 13521 df-mod 13599 df-seq 13731 df-exp 13792 df-cj 14819 df-re 14820 df-im 14821 df-sqrt 14955 df-abs 14956 df-dvds 15973 df-prm 16386 df-fppr 45188 |
This theorem is referenced by: nfermltl2rev 45206 |
Copyright terms: Public domain | W3C validator |