![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 341fppr2 | Structured version Visualization version GIF version |
Description: 341 is the (smallest) Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023.) |
Ref | Expression |
---|---|
341fppr2 | ⊢ ;;341 ∈ ( FPPr ‘2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4z 12636 | . . 3 ⊢ 4 ∈ ℤ | |
2 | 3nn0 12530 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
3 | 4nn0 12531 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
4 | 2, 3 | deccl 12732 | . . . . 5 ⊢ ;34 ∈ ℕ0 |
5 | 1nn 12263 | . . . . 5 ⊢ 1 ∈ ℕ | |
6 | 4, 5 | decnncl 12737 | . . . 4 ⊢ ;;341 ∈ ℕ |
7 | 6 | nnzi 12626 | . . 3 ⊢ ;;341 ∈ ℤ |
8 | 4nn 12335 | . . . . 5 ⊢ 4 ∈ ℕ | |
9 | 2, 8 | decnncl 12737 | . . . 4 ⊢ ;34 ∈ ℕ |
10 | 1nn0 12528 | . . . 4 ⊢ 1 ∈ ℕ0 | |
11 | 4re 12336 | . . . . 5 ⊢ 4 ∈ ℝ | |
12 | 9re 12351 | . . . . 5 ⊢ 9 ∈ ℝ | |
13 | 4lt9 12455 | . . . . 5 ⊢ 4 < 9 | |
14 | 11, 12, 13 | ltleii 11377 | . . . 4 ⊢ 4 ≤ 9 |
15 | 9, 10, 3, 14 | declei 12753 | . . 3 ⊢ 4 ≤ ;;341 |
16 | eluz2 12868 | . . 3 ⊢ (;;341 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ ;;341 ∈ ℤ ∧ 4 ≤ ;;341)) | |
17 | 1, 7, 15, 16 | mpbir3an 1338 | . 2 ⊢ ;;341 ∈ (ℤ≥‘4) |
18 | 2z 12634 | . . . . 5 ⊢ 2 ∈ ℤ | |
19 | 10, 5 | decnncl 12737 | . . . . . 6 ⊢ ;11 ∈ ℕ |
20 | 19 | nnzi 12626 | . . . . 5 ⊢ ;11 ∈ ℤ |
21 | 2nn0 12529 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
22 | 2re 12326 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
23 | 2lt9 12457 | . . . . . . 7 ⊢ 2 < 9 | |
24 | 22, 12, 23 | ltleii 11377 | . . . . . 6 ⊢ 2 ≤ 9 |
25 | 5, 10, 21, 24 | declei 12753 | . . . . 5 ⊢ 2 ≤ ;11 |
26 | eluz2 12868 | . . . . 5 ⊢ (;11 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;11 ∈ ℤ ∧ 2 ≤ ;11)) | |
27 | 18, 20, 25, 26 | mpbir3an 1338 | . . . 4 ⊢ ;11 ∈ (ℤ≥‘2) |
28 | 2, 5 | decnncl 12737 | . . . . . 6 ⊢ ;31 ∈ ℕ |
29 | 28 | nnzi 12626 | . . . . 5 ⊢ ;31 ∈ ℤ |
30 | 3nn 12331 | . . . . . 6 ⊢ 3 ∈ ℕ | |
31 | 30, 10, 21, 24 | declei 12753 | . . . . 5 ⊢ 2 ≤ ;31 |
32 | eluz2 12868 | . . . . 5 ⊢ (;31 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;31 ∈ ℤ ∧ 2 ≤ ;31)) | |
33 | 18, 29, 31, 32 | mpbir3an 1338 | . . . 4 ⊢ ;31 ∈ (ℤ≥‘2) |
34 | nprm 16668 | . . . 4 ⊢ ((;11 ∈ (ℤ≥‘2) ∧ ;31 ∈ (ℤ≥‘2)) → ¬ (;11 · ;31) ∈ ℙ) | |
35 | 27, 33, 34 | mp2an 690 | . . 3 ⊢ ¬ (;11 · ;31) ∈ ℙ |
36 | df-nel 3044 | . . . 4 ⊢ (;;341 ∉ ℙ ↔ ¬ ;;341 ∈ ℙ) | |
37 | 11t31e341 47119 | . . . . . 6 ⊢ (;11 · ;31) = ;;341 | |
38 | 37 | eqcomi 2737 | . . . . 5 ⊢ ;;341 = (;11 · ;31) |
39 | 38 | eleq1i 2820 | . . . 4 ⊢ (;;341 ∈ ℙ ↔ (;11 · ;31) ∈ ℙ) |
40 | 36, 39 | xchbinx 333 | . . 3 ⊢ (;;341 ∉ ℙ ↔ ¬ (;11 · ;31) ∈ ℙ) |
41 | 35, 40 | mpbir 230 | . 2 ⊢ ;;341 ∉ ℙ |
42 | eqid 2728 | . . . . . 6 ⊢ ;;341 = ;;341 | |
43 | eqid 2728 | . . . . . 6 ⊢ (;34 + 1) = (;34 + 1) | |
44 | 1m1e0 12324 | . . . . . 6 ⊢ (1 − 1) = 0 | |
45 | 4, 10, 10, 42, 43, 44 | decsubi 12780 | . . . . 5 ⊢ (;;341 − 1) = ;;340 |
46 | 45 | oveq2i 7437 | . . . 4 ⊢ (2↑(;;341 − 1)) = (2↑;;340) |
47 | 46 | oveq1i 7436 | . . 3 ⊢ ((2↑(;;341 − 1)) mod ;;341) = ((2↑;;340) mod ;;341) |
48 | 2exp340mod341 47120 | . . 3 ⊢ ((2↑;;340) mod ;;341) = 1 | |
49 | 47, 48 | eqtri 2756 | . 2 ⊢ ((2↑(;;341 − 1)) mod ;;341) = 1 |
50 | 2nn 12325 | . . 3 ⊢ 2 ∈ ℕ | |
51 | fpprel 47115 | . . 3 ⊢ (2 ∈ ℕ → (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1))) | |
52 | 50, 51 | ax-mp 5 | . 2 ⊢ (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1)) |
53 | 17, 41, 49, 52 | mpbir3an 1338 | 1 ⊢ ;;341 ∈ ( FPPr ‘2) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∉ wnel 3043 class class class wbr 5152 ‘cfv 6553 (class class class)co 7426 0cc0 11148 1c1 11149 + caddc 11151 · cmul 11153 ≤ cle 11289 − cmin 11484 ℕcn 12252 2c2 12307 3c3 12308 4c4 12309 9c9 12314 ℤcz 12598 ;cdc 12717 ℤ≥cuz 12862 mod cmo 13876 ↑cexp 14068 ℙcprime 16651 FPPr cfppr 47111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-2o 8496 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-sup 9475 df-inf 9476 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-z 12599 df-dec 12718 df-uz 12863 df-rp 13017 df-fl 13799 df-mod 13877 df-seq 14009 df-exp 14069 df-cj 15088 df-re 15089 df-im 15090 df-sqrt 15224 df-abs 15225 df-dvds 16241 df-prm 16652 df-fppr 47112 |
This theorem is referenced by: nfermltl2rev 47130 |
Copyright terms: Public domain | W3C validator |