| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 341fppr2 | Structured version Visualization version GIF version | ||
| Description: 341 is the (smallest) Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023.) |
| Ref | Expression |
|---|---|
| 341fppr2 | ⊢ ;;341 ∈ ( FPPr ‘2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4z 12501 | . . 3 ⊢ 4 ∈ ℤ | |
| 2 | 3nn0 12394 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 3 | 4nn0 12395 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12598 | . . . . 5 ⊢ ;34 ∈ ℕ0 |
| 5 | 1nn 12131 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 6 | 4, 5 | decnncl 12603 | . . . 4 ⊢ ;;341 ∈ ℕ |
| 7 | 6 | nnzi 12491 | . . 3 ⊢ ;;341 ∈ ℤ |
| 8 | 4nn 12203 | . . . . 5 ⊢ 4 ∈ ℕ | |
| 9 | 2, 8 | decnncl 12603 | . . . 4 ⊢ ;34 ∈ ℕ |
| 10 | 1nn0 12392 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 11 | 4re 12204 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 12 | 9re 12219 | . . . . 5 ⊢ 9 ∈ ℝ | |
| 13 | 4lt9 12318 | . . . . 5 ⊢ 4 < 9 | |
| 14 | 11, 12, 13 | ltleii 11231 | . . . 4 ⊢ 4 ≤ 9 |
| 15 | 9, 10, 3, 14 | declei 12619 | . . 3 ⊢ 4 ≤ ;;341 |
| 16 | eluz2 12733 | . . 3 ⊢ (;;341 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ ;;341 ∈ ℤ ∧ 4 ≤ ;;341)) | |
| 17 | 1, 7, 15, 16 | mpbir3an 1342 | . 2 ⊢ ;;341 ∈ (ℤ≥‘4) |
| 18 | 2z 12499 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 19 | 10, 5 | decnncl 12603 | . . . . . 6 ⊢ ;11 ∈ ℕ |
| 20 | 19 | nnzi 12491 | . . . . 5 ⊢ ;11 ∈ ℤ |
| 21 | 2nn0 12393 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 22 | 2re 12194 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 23 | 2lt9 12320 | . . . . . . 7 ⊢ 2 < 9 | |
| 24 | 22, 12, 23 | ltleii 11231 | . . . . . 6 ⊢ 2 ≤ 9 |
| 25 | 5, 10, 21, 24 | declei 12619 | . . . . 5 ⊢ 2 ≤ ;11 |
| 26 | eluz2 12733 | . . . . 5 ⊢ (;11 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;11 ∈ ℤ ∧ 2 ≤ ;11)) | |
| 27 | 18, 20, 25, 26 | mpbir3an 1342 | . . . 4 ⊢ ;11 ∈ (ℤ≥‘2) |
| 28 | 2, 5 | decnncl 12603 | . . . . . 6 ⊢ ;31 ∈ ℕ |
| 29 | 28 | nnzi 12491 | . . . . 5 ⊢ ;31 ∈ ℤ |
| 30 | 3nn 12199 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 31 | 30, 10, 21, 24 | declei 12619 | . . . . 5 ⊢ 2 ≤ ;31 |
| 32 | eluz2 12733 | . . . . 5 ⊢ (;31 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;31 ∈ ℤ ∧ 2 ≤ ;31)) | |
| 33 | 18, 29, 31, 32 | mpbir3an 1342 | . . . 4 ⊢ ;31 ∈ (ℤ≥‘2) |
| 34 | nprm 16594 | . . . 4 ⊢ ((;11 ∈ (ℤ≥‘2) ∧ ;31 ∈ (ℤ≥‘2)) → ¬ (;11 · ;31) ∈ ℙ) | |
| 35 | 27, 33, 34 | mp2an 692 | . . 3 ⊢ ¬ (;11 · ;31) ∈ ℙ |
| 36 | df-nel 3033 | . . . 4 ⊢ (;;341 ∉ ℙ ↔ ¬ ;;341 ∈ ℙ) | |
| 37 | 11t31e341 47763 | . . . . . 6 ⊢ (;11 · ;31) = ;;341 | |
| 38 | 37 | eqcomi 2740 | . . . . 5 ⊢ ;;341 = (;11 · ;31) |
| 39 | 38 | eleq1i 2822 | . . . 4 ⊢ (;;341 ∈ ℙ ↔ (;11 · ;31) ∈ ℙ) |
| 40 | 36, 39 | xchbinx 334 | . . 3 ⊢ (;;341 ∉ ℙ ↔ ¬ (;11 · ;31) ∈ ℙ) |
| 41 | 35, 40 | mpbir 231 | . 2 ⊢ ;;341 ∉ ℙ |
| 42 | eqid 2731 | . . . . . 6 ⊢ ;;341 = ;;341 | |
| 43 | eqid 2731 | . . . . . 6 ⊢ (;34 + 1) = (;34 + 1) | |
| 44 | 1m1e0 12192 | . . . . . 6 ⊢ (1 − 1) = 0 | |
| 45 | 4, 10, 10, 42, 43, 44 | decsubi 12646 | . . . . 5 ⊢ (;;341 − 1) = ;;340 |
| 46 | 45 | oveq2i 7352 | . . . 4 ⊢ (2↑(;;341 − 1)) = (2↑;;340) |
| 47 | 46 | oveq1i 7351 | . . 3 ⊢ ((2↑(;;341 − 1)) mod ;;341) = ((2↑;;340) mod ;;341) |
| 48 | 2exp340mod341 47764 | . . 3 ⊢ ((2↑;;340) mod ;;341) = 1 | |
| 49 | 47, 48 | eqtri 2754 | . 2 ⊢ ((2↑(;;341 − 1)) mod ;;341) = 1 |
| 50 | 2nn 12193 | . . 3 ⊢ 2 ∈ ℕ | |
| 51 | fpprel 47759 | . . 3 ⊢ (2 ∈ ℕ → (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1))) | |
| 52 | 50, 51 | ax-mp 5 | . 2 ⊢ (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1)) |
| 53 | 17, 41, 49, 52 | mpbir3an 1342 | 1 ⊢ ;;341 ∈ ( FPPr ‘2) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 0cc0 11001 1c1 11002 + caddc 11004 · cmul 11006 ≤ cle 11142 − cmin 11339 ℕcn 12120 2c2 12175 3c3 12176 4c4 12177 9c9 12182 ℤcz 12463 ;cdc 12583 ℤ≥cuz 12727 mod cmo 13768 ↑cexp 13963 ℙcprime 16577 FPPr cfppr 47755 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-rp 12886 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-dvds 16159 df-prm 16578 df-fppr 47756 |
| This theorem is referenced by: nfermltl2rev 47774 |
| Copyright terms: Public domain | W3C validator |