![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 341fppr2 | Structured version Visualization version GIF version |
Description: 341 is the (smallest) Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023.) |
Ref | Expression |
---|---|
341fppr2 | ⊢ ;;341 ∈ ( FPPr ‘2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4z 12596 | . . 3 ⊢ 4 ∈ ℤ | |
2 | 3nn0 12490 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
3 | 4nn0 12491 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
4 | 2, 3 | deccl 12692 | . . . . 5 ⊢ ;34 ∈ ℕ0 |
5 | 1nn 12223 | . . . . 5 ⊢ 1 ∈ ℕ | |
6 | 4, 5 | decnncl 12697 | . . . 4 ⊢ ;;341 ∈ ℕ |
7 | 6 | nnzi 12586 | . . 3 ⊢ ;;341 ∈ ℤ |
8 | 4nn 12295 | . . . . 5 ⊢ 4 ∈ ℕ | |
9 | 2, 8 | decnncl 12697 | . . . 4 ⊢ ;34 ∈ ℕ |
10 | 1nn0 12488 | . . . 4 ⊢ 1 ∈ ℕ0 | |
11 | 4re 12296 | . . . . 5 ⊢ 4 ∈ ℝ | |
12 | 9re 12311 | . . . . 5 ⊢ 9 ∈ ℝ | |
13 | 4lt9 12415 | . . . . 5 ⊢ 4 < 9 | |
14 | 11, 12, 13 | ltleii 11337 | . . . 4 ⊢ 4 ≤ 9 |
15 | 9, 10, 3, 14 | declei 12713 | . . 3 ⊢ 4 ≤ ;;341 |
16 | eluz2 12828 | . . 3 ⊢ (;;341 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ ;;341 ∈ ℤ ∧ 4 ≤ ;;341)) | |
17 | 1, 7, 15, 16 | mpbir3an 1342 | . 2 ⊢ ;;341 ∈ (ℤ≥‘4) |
18 | 2z 12594 | . . . . 5 ⊢ 2 ∈ ℤ | |
19 | 10, 5 | decnncl 12697 | . . . . . 6 ⊢ ;11 ∈ ℕ |
20 | 19 | nnzi 12586 | . . . . 5 ⊢ ;11 ∈ ℤ |
21 | 2nn0 12489 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
22 | 2re 12286 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
23 | 2lt9 12417 | . . . . . . 7 ⊢ 2 < 9 | |
24 | 22, 12, 23 | ltleii 11337 | . . . . . 6 ⊢ 2 ≤ 9 |
25 | 5, 10, 21, 24 | declei 12713 | . . . . 5 ⊢ 2 ≤ ;11 |
26 | eluz2 12828 | . . . . 5 ⊢ (;11 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;11 ∈ ℤ ∧ 2 ≤ ;11)) | |
27 | 18, 20, 25, 26 | mpbir3an 1342 | . . . 4 ⊢ ;11 ∈ (ℤ≥‘2) |
28 | 2, 5 | decnncl 12697 | . . . . . 6 ⊢ ;31 ∈ ℕ |
29 | 28 | nnzi 12586 | . . . . 5 ⊢ ;31 ∈ ℤ |
30 | 3nn 12291 | . . . . . 6 ⊢ 3 ∈ ℕ | |
31 | 30, 10, 21, 24 | declei 12713 | . . . . 5 ⊢ 2 ≤ ;31 |
32 | eluz2 12828 | . . . . 5 ⊢ (;31 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;31 ∈ ℤ ∧ 2 ≤ ;31)) | |
33 | 18, 29, 31, 32 | mpbir3an 1342 | . . . 4 ⊢ ;31 ∈ (ℤ≥‘2) |
34 | nprm 16625 | . . . 4 ⊢ ((;11 ∈ (ℤ≥‘2) ∧ ;31 ∈ (ℤ≥‘2)) → ¬ (;11 · ;31) ∈ ℙ) | |
35 | 27, 33, 34 | mp2an 691 | . . 3 ⊢ ¬ (;11 · ;31) ∈ ℙ |
36 | df-nel 3048 | . . . 4 ⊢ (;;341 ∉ ℙ ↔ ¬ ;;341 ∈ ℙ) | |
37 | 11t31e341 46400 | . . . . . 6 ⊢ (;11 · ;31) = ;;341 | |
38 | 37 | eqcomi 2742 | . . . . 5 ⊢ ;;341 = (;11 · ;31) |
39 | 38 | eleq1i 2825 | . . . 4 ⊢ (;;341 ∈ ℙ ↔ (;11 · ;31) ∈ ℙ) |
40 | 36, 39 | xchbinx 334 | . . 3 ⊢ (;;341 ∉ ℙ ↔ ¬ (;11 · ;31) ∈ ℙ) |
41 | 35, 40 | mpbir 230 | . 2 ⊢ ;;341 ∉ ℙ |
42 | eqid 2733 | . . . . . 6 ⊢ ;;341 = ;;341 | |
43 | eqid 2733 | . . . . . 6 ⊢ (;34 + 1) = (;34 + 1) | |
44 | 1m1e0 12284 | . . . . . 6 ⊢ (1 − 1) = 0 | |
45 | 4, 10, 10, 42, 43, 44 | decsubi 12740 | . . . . 5 ⊢ (;;341 − 1) = ;;340 |
46 | 45 | oveq2i 7420 | . . . 4 ⊢ (2↑(;;341 − 1)) = (2↑;;340) |
47 | 46 | oveq1i 7419 | . . 3 ⊢ ((2↑(;;341 − 1)) mod ;;341) = ((2↑;;340) mod ;;341) |
48 | 2exp340mod341 46401 | . . 3 ⊢ ((2↑;;340) mod ;;341) = 1 | |
49 | 47, 48 | eqtri 2761 | . 2 ⊢ ((2↑(;;341 − 1)) mod ;;341) = 1 |
50 | 2nn 12285 | . . 3 ⊢ 2 ∈ ℕ | |
51 | fpprel 46396 | . . 3 ⊢ (2 ∈ ℕ → (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1))) | |
52 | 50, 51 | ax-mp 5 | . 2 ⊢ (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1)) |
53 | 17, 41, 49, 52 | mpbir3an 1342 | 1 ⊢ ;;341 ∈ ( FPPr ‘2) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∉ wnel 3047 class class class wbr 5149 ‘cfv 6544 (class class class)co 7409 0cc0 11110 1c1 11111 + caddc 11113 · cmul 11115 ≤ cle 11249 − cmin 11444 ℕcn 12212 2c2 12267 3c3 12268 4c4 12269 9c9 12274 ℤcz 12558 ;cdc 12677 ℤ≥cuz 12822 mod cmo 13834 ↑cexp 14027 ℙcprime 16608 FPPr cfppr 46392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-rp 12975 df-fl 13757 df-mod 13835 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-dvds 16198 df-prm 16609 df-fppr 46393 |
This theorem is referenced by: nfermltl2rev 46411 |
Copyright terms: Public domain | W3C validator |