| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 341fppr2 | Structured version Visualization version GIF version | ||
| Description: 341 is the (smallest) Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023.) |
| Ref | Expression |
|---|---|
| 341fppr2 | ⊢ ;;341 ∈ ( FPPr ‘2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4z 12543 | . . 3 ⊢ 4 ∈ ℤ | |
| 2 | 3nn0 12436 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 3 | 4nn0 12437 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12640 | . . . . 5 ⊢ ;34 ∈ ℕ0 |
| 5 | 1nn 12173 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 6 | 4, 5 | decnncl 12645 | . . . 4 ⊢ ;;341 ∈ ℕ |
| 7 | 6 | nnzi 12533 | . . 3 ⊢ ;;341 ∈ ℤ |
| 8 | 4nn 12245 | . . . . 5 ⊢ 4 ∈ ℕ | |
| 9 | 2, 8 | decnncl 12645 | . . . 4 ⊢ ;34 ∈ ℕ |
| 10 | 1nn0 12434 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 11 | 4re 12246 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 12 | 9re 12261 | . . . . 5 ⊢ 9 ∈ ℝ | |
| 13 | 4lt9 12360 | . . . . 5 ⊢ 4 < 9 | |
| 14 | 11, 12, 13 | ltleii 11273 | . . . 4 ⊢ 4 ≤ 9 |
| 15 | 9, 10, 3, 14 | declei 12661 | . . 3 ⊢ 4 ≤ ;;341 |
| 16 | eluz2 12775 | . . 3 ⊢ (;;341 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ ;;341 ∈ ℤ ∧ 4 ≤ ;;341)) | |
| 17 | 1, 7, 15, 16 | mpbir3an 1342 | . 2 ⊢ ;;341 ∈ (ℤ≥‘4) |
| 18 | 2z 12541 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 19 | 10, 5 | decnncl 12645 | . . . . . 6 ⊢ ;11 ∈ ℕ |
| 20 | 19 | nnzi 12533 | . . . . 5 ⊢ ;11 ∈ ℤ |
| 21 | 2nn0 12435 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 22 | 2re 12236 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 23 | 2lt9 12362 | . . . . . . 7 ⊢ 2 < 9 | |
| 24 | 22, 12, 23 | ltleii 11273 | . . . . . 6 ⊢ 2 ≤ 9 |
| 25 | 5, 10, 21, 24 | declei 12661 | . . . . 5 ⊢ 2 ≤ ;11 |
| 26 | eluz2 12775 | . . . . 5 ⊢ (;11 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;11 ∈ ℤ ∧ 2 ≤ ;11)) | |
| 27 | 18, 20, 25, 26 | mpbir3an 1342 | . . . 4 ⊢ ;11 ∈ (ℤ≥‘2) |
| 28 | 2, 5 | decnncl 12645 | . . . . . 6 ⊢ ;31 ∈ ℕ |
| 29 | 28 | nnzi 12533 | . . . . 5 ⊢ ;31 ∈ ℤ |
| 30 | 3nn 12241 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 31 | 30, 10, 21, 24 | declei 12661 | . . . . 5 ⊢ 2 ≤ ;31 |
| 32 | eluz2 12775 | . . . . 5 ⊢ (;31 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;31 ∈ ℤ ∧ 2 ≤ ;31)) | |
| 33 | 18, 29, 31, 32 | mpbir3an 1342 | . . . 4 ⊢ ;31 ∈ (ℤ≥‘2) |
| 34 | nprm 16634 | . . . 4 ⊢ ((;11 ∈ (ℤ≥‘2) ∧ ;31 ∈ (ℤ≥‘2)) → ¬ (;11 · ;31) ∈ ℙ) | |
| 35 | 27, 33, 34 | mp2an 692 | . . 3 ⊢ ¬ (;11 · ;31) ∈ ℙ |
| 36 | df-nel 3030 | . . . 4 ⊢ (;;341 ∉ ℙ ↔ ¬ ;;341 ∈ ℙ) | |
| 37 | 11t31e341 47706 | . . . . . 6 ⊢ (;11 · ;31) = ;;341 | |
| 38 | 37 | eqcomi 2738 | . . . . 5 ⊢ ;;341 = (;11 · ;31) |
| 39 | 38 | eleq1i 2819 | . . . 4 ⊢ (;;341 ∈ ℙ ↔ (;11 · ;31) ∈ ℙ) |
| 40 | 36, 39 | xchbinx 334 | . . 3 ⊢ (;;341 ∉ ℙ ↔ ¬ (;11 · ;31) ∈ ℙ) |
| 41 | 35, 40 | mpbir 231 | . 2 ⊢ ;;341 ∉ ℙ |
| 42 | eqid 2729 | . . . . . 6 ⊢ ;;341 = ;;341 | |
| 43 | eqid 2729 | . . . . . 6 ⊢ (;34 + 1) = (;34 + 1) | |
| 44 | 1m1e0 12234 | . . . . . 6 ⊢ (1 − 1) = 0 | |
| 45 | 4, 10, 10, 42, 43, 44 | decsubi 12688 | . . . . 5 ⊢ (;;341 − 1) = ;;340 |
| 46 | 45 | oveq2i 7380 | . . . 4 ⊢ (2↑(;;341 − 1)) = (2↑;;340) |
| 47 | 46 | oveq1i 7379 | . . 3 ⊢ ((2↑(;;341 − 1)) mod ;;341) = ((2↑;;340) mod ;;341) |
| 48 | 2exp340mod341 47707 | . . 3 ⊢ ((2↑;;340) mod ;;341) = 1 | |
| 49 | 47, 48 | eqtri 2752 | . 2 ⊢ ((2↑(;;341 − 1)) mod ;;341) = 1 |
| 50 | 2nn 12235 | . . 3 ⊢ 2 ∈ ℕ | |
| 51 | fpprel 47702 | . . 3 ⊢ (2 ∈ ℕ → (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1))) | |
| 52 | 50, 51 | ax-mp 5 | . 2 ⊢ (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1)) |
| 53 | 17, 41, 49, 52 | mpbir3an 1342 | 1 ⊢ ;;341 ∈ ( FPPr ‘2) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 ≤ cle 11185 − cmin 11381 ℕcn 12162 2c2 12217 3c3 12218 4c4 12219 9c9 12224 ℤcz 12505 ;cdc 12625 ℤ≥cuz 12769 mod cmo 13807 ↑cexp 14002 ℙcprime 16617 FPPr cfppr 47698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-prm 16618 df-fppr 47699 |
| This theorem is referenced by: nfermltl2rev 47717 |
| Copyright terms: Public domain | W3C validator |