![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 341fppr2 | Structured version Visualization version GIF version |
Description: 341 is the (smallest) Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023.) |
Ref | Expression |
---|---|
341fppr2 | ⊢ ;;341 ∈ ( FPPr ‘2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4z 12649 | . . 3 ⊢ 4 ∈ ℤ | |
2 | 3nn0 12542 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
3 | 4nn0 12543 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
4 | 2, 3 | deccl 12746 | . . . . 5 ⊢ ;34 ∈ ℕ0 |
5 | 1nn 12275 | . . . . 5 ⊢ 1 ∈ ℕ | |
6 | 4, 5 | decnncl 12751 | . . . 4 ⊢ ;;341 ∈ ℕ |
7 | 6 | nnzi 12639 | . . 3 ⊢ ;;341 ∈ ℤ |
8 | 4nn 12347 | . . . . 5 ⊢ 4 ∈ ℕ | |
9 | 2, 8 | decnncl 12751 | . . . 4 ⊢ ;34 ∈ ℕ |
10 | 1nn0 12540 | . . . 4 ⊢ 1 ∈ ℕ0 | |
11 | 4re 12348 | . . . . 5 ⊢ 4 ∈ ℝ | |
12 | 9re 12363 | . . . . 5 ⊢ 9 ∈ ℝ | |
13 | 4lt9 12467 | . . . . 5 ⊢ 4 < 9 | |
14 | 11, 12, 13 | ltleii 11382 | . . . 4 ⊢ 4 ≤ 9 |
15 | 9, 10, 3, 14 | declei 12767 | . . 3 ⊢ 4 ≤ ;;341 |
16 | eluz2 12882 | . . 3 ⊢ (;;341 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ ;;341 ∈ ℤ ∧ 4 ≤ ;;341)) | |
17 | 1, 7, 15, 16 | mpbir3an 1340 | . 2 ⊢ ;;341 ∈ (ℤ≥‘4) |
18 | 2z 12647 | . . . . 5 ⊢ 2 ∈ ℤ | |
19 | 10, 5 | decnncl 12751 | . . . . . 6 ⊢ ;11 ∈ ℕ |
20 | 19 | nnzi 12639 | . . . . 5 ⊢ ;11 ∈ ℤ |
21 | 2nn0 12541 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
22 | 2re 12338 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
23 | 2lt9 12469 | . . . . . . 7 ⊢ 2 < 9 | |
24 | 22, 12, 23 | ltleii 11382 | . . . . . 6 ⊢ 2 ≤ 9 |
25 | 5, 10, 21, 24 | declei 12767 | . . . . 5 ⊢ 2 ≤ ;11 |
26 | eluz2 12882 | . . . . 5 ⊢ (;11 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;11 ∈ ℤ ∧ 2 ≤ ;11)) | |
27 | 18, 20, 25, 26 | mpbir3an 1340 | . . . 4 ⊢ ;11 ∈ (ℤ≥‘2) |
28 | 2, 5 | decnncl 12751 | . . . . . 6 ⊢ ;31 ∈ ℕ |
29 | 28 | nnzi 12639 | . . . . 5 ⊢ ;31 ∈ ℤ |
30 | 3nn 12343 | . . . . . 6 ⊢ 3 ∈ ℕ | |
31 | 30, 10, 21, 24 | declei 12767 | . . . . 5 ⊢ 2 ≤ ;31 |
32 | eluz2 12882 | . . . . 5 ⊢ (;31 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;31 ∈ ℤ ∧ 2 ≤ ;31)) | |
33 | 18, 29, 31, 32 | mpbir3an 1340 | . . . 4 ⊢ ;31 ∈ (ℤ≥‘2) |
34 | nprm 16722 | . . . 4 ⊢ ((;11 ∈ (ℤ≥‘2) ∧ ;31 ∈ (ℤ≥‘2)) → ¬ (;11 · ;31) ∈ ℙ) | |
35 | 27, 33, 34 | mp2an 692 | . . 3 ⊢ ¬ (;11 · ;31) ∈ ℙ |
36 | df-nel 3045 | . . . 4 ⊢ (;;341 ∉ ℙ ↔ ¬ ;;341 ∈ ℙ) | |
37 | 11t31e341 47657 | . . . . . 6 ⊢ (;11 · ;31) = ;;341 | |
38 | 37 | eqcomi 2744 | . . . . 5 ⊢ ;;341 = (;11 · ;31) |
39 | 38 | eleq1i 2830 | . . . 4 ⊢ (;;341 ∈ ℙ ↔ (;11 · ;31) ∈ ℙ) |
40 | 36, 39 | xchbinx 334 | . . 3 ⊢ (;;341 ∉ ℙ ↔ ¬ (;11 · ;31) ∈ ℙ) |
41 | 35, 40 | mpbir 231 | . 2 ⊢ ;;341 ∉ ℙ |
42 | eqid 2735 | . . . . . 6 ⊢ ;;341 = ;;341 | |
43 | eqid 2735 | . . . . . 6 ⊢ (;34 + 1) = (;34 + 1) | |
44 | 1m1e0 12336 | . . . . . 6 ⊢ (1 − 1) = 0 | |
45 | 4, 10, 10, 42, 43, 44 | decsubi 12794 | . . . . 5 ⊢ (;;341 − 1) = ;;340 |
46 | 45 | oveq2i 7442 | . . . 4 ⊢ (2↑(;;341 − 1)) = (2↑;;340) |
47 | 46 | oveq1i 7441 | . . 3 ⊢ ((2↑(;;341 − 1)) mod ;;341) = ((2↑;;340) mod ;;341) |
48 | 2exp340mod341 47658 | . . 3 ⊢ ((2↑;;340) mod ;;341) = 1 | |
49 | 47, 48 | eqtri 2763 | . 2 ⊢ ((2↑(;;341 − 1)) mod ;;341) = 1 |
50 | 2nn 12337 | . . 3 ⊢ 2 ∈ ℕ | |
51 | fpprel 47653 | . . 3 ⊢ (2 ∈ ℕ → (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1))) | |
52 | 50, 51 | ax-mp 5 | . 2 ⊢ (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1)) |
53 | 17, 41, 49, 52 | mpbir3an 1340 | 1 ⊢ ;;341 ∈ ( FPPr ‘2) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∉ wnel 3044 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 ≤ cle 11294 − cmin 11490 ℕcn 12264 2c2 12319 3c3 12320 4c4 12321 9c9 12326 ℤcz 12611 ;cdc 12731 ℤ≥cuz 12876 mod cmo 13906 ↑cexp 14099 ℙcprime 16705 FPPr cfppr 47649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-prm 16706 df-fppr 47650 |
This theorem is referenced by: nfermltl2rev 47668 |
Copyright terms: Public domain | W3C validator |