![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 341fppr2 | Structured version Visualization version GIF version |
Description: 341 is the (smallest) Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023.) |
Ref | Expression |
---|---|
341fppr2 | ⊢ ;;341 ∈ ( FPPr ‘2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4z 12600 | . . 3 ⊢ 4 ∈ ℤ | |
2 | 3nn0 12494 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
3 | 4nn0 12495 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
4 | 2, 3 | deccl 12696 | . . . . 5 ⊢ ;34 ∈ ℕ0 |
5 | 1nn 12227 | . . . . 5 ⊢ 1 ∈ ℕ | |
6 | 4, 5 | decnncl 12701 | . . . 4 ⊢ ;;341 ∈ ℕ |
7 | 6 | nnzi 12590 | . . 3 ⊢ ;;341 ∈ ℤ |
8 | 4nn 12299 | . . . . 5 ⊢ 4 ∈ ℕ | |
9 | 2, 8 | decnncl 12701 | . . . 4 ⊢ ;34 ∈ ℕ |
10 | 1nn0 12492 | . . . 4 ⊢ 1 ∈ ℕ0 | |
11 | 4re 12300 | . . . . 5 ⊢ 4 ∈ ℝ | |
12 | 9re 12315 | . . . . 5 ⊢ 9 ∈ ℝ | |
13 | 4lt9 12419 | . . . . 5 ⊢ 4 < 9 | |
14 | 11, 12, 13 | ltleii 11341 | . . . 4 ⊢ 4 ≤ 9 |
15 | 9, 10, 3, 14 | declei 12717 | . . 3 ⊢ 4 ≤ ;;341 |
16 | eluz2 12832 | . . 3 ⊢ (;;341 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ ;;341 ∈ ℤ ∧ 4 ≤ ;;341)) | |
17 | 1, 7, 15, 16 | mpbir3an 1338 | . 2 ⊢ ;;341 ∈ (ℤ≥‘4) |
18 | 2z 12598 | . . . . 5 ⊢ 2 ∈ ℤ | |
19 | 10, 5 | decnncl 12701 | . . . . . 6 ⊢ ;11 ∈ ℕ |
20 | 19 | nnzi 12590 | . . . . 5 ⊢ ;11 ∈ ℤ |
21 | 2nn0 12493 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
22 | 2re 12290 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
23 | 2lt9 12421 | . . . . . . 7 ⊢ 2 < 9 | |
24 | 22, 12, 23 | ltleii 11341 | . . . . . 6 ⊢ 2 ≤ 9 |
25 | 5, 10, 21, 24 | declei 12717 | . . . . 5 ⊢ 2 ≤ ;11 |
26 | eluz2 12832 | . . . . 5 ⊢ (;11 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;11 ∈ ℤ ∧ 2 ≤ ;11)) | |
27 | 18, 20, 25, 26 | mpbir3an 1338 | . . . 4 ⊢ ;11 ∈ (ℤ≥‘2) |
28 | 2, 5 | decnncl 12701 | . . . . . 6 ⊢ ;31 ∈ ℕ |
29 | 28 | nnzi 12590 | . . . . 5 ⊢ ;31 ∈ ℤ |
30 | 3nn 12295 | . . . . . 6 ⊢ 3 ∈ ℕ | |
31 | 30, 10, 21, 24 | declei 12717 | . . . . 5 ⊢ 2 ≤ ;31 |
32 | eluz2 12832 | . . . . 5 ⊢ (;31 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;31 ∈ ℤ ∧ 2 ≤ ;31)) | |
33 | 18, 29, 31, 32 | mpbir3an 1338 | . . . 4 ⊢ ;31 ∈ (ℤ≥‘2) |
34 | nprm 16632 | . . . 4 ⊢ ((;11 ∈ (ℤ≥‘2) ∧ ;31 ∈ (ℤ≥‘2)) → ¬ (;11 · ;31) ∈ ℙ) | |
35 | 27, 33, 34 | mp2an 689 | . . 3 ⊢ ¬ (;11 · ;31) ∈ ℙ |
36 | df-nel 3041 | . . . 4 ⊢ (;;341 ∉ ℙ ↔ ¬ ;;341 ∈ ℙ) | |
37 | 11t31e341 46972 | . . . . . 6 ⊢ (;11 · ;31) = ;;341 | |
38 | 37 | eqcomi 2735 | . . . . 5 ⊢ ;;341 = (;11 · ;31) |
39 | 38 | eleq1i 2818 | . . . 4 ⊢ (;;341 ∈ ℙ ↔ (;11 · ;31) ∈ ℙ) |
40 | 36, 39 | xchbinx 334 | . . 3 ⊢ (;;341 ∉ ℙ ↔ ¬ (;11 · ;31) ∈ ℙ) |
41 | 35, 40 | mpbir 230 | . 2 ⊢ ;;341 ∉ ℙ |
42 | eqid 2726 | . . . . . 6 ⊢ ;;341 = ;;341 | |
43 | eqid 2726 | . . . . . 6 ⊢ (;34 + 1) = (;34 + 1) | |
44 | 1m1e0 12288 | . . . . . 6 ⊢ (1 − 1) = 0 | |
45 | 4, 10, 10, 42, 43, 44 | decsubi 12744 | . . . . 5 ⊢ (;;341 − 1) = ;;340 |
46 | 45 | oveq2i 7416 | . . . 4 ⊢ (2↑(;;341 − 1)) = (2↑;;340) |
47 | 46 | oveq1i 7415 | . . 3 ⊢ ((2↑(;;341 − 1)) mod ;;341) = ((2↑;;340) mod ;;341) |
48 | 2exp340mod341 46973 | . . 3 ⊢ ((2↑;;340) mod ;;341) = 1 | |
49 | 47, 48 | eqtri 2754 | . 2 ⊢ ((2↑(;;341 − 1)) mod ;;341) = 1 |
50 | 2nn 12289 | . . 3 ⊢ 2 ∈ ℕ | |
51 | fpprel 46968 | . . 3 ⊢ (2 ∈ ℕ → (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1))) | |
52 | 50, 51 | ax-mp 5 | . 2 ⊢ (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1)) |
53 | 17, 41, 49, 52 | mpbir3an 1338 | 1 ⊢ ;;341 ∈ ( FPPr ‘2) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∉ wnel 3040 class class class wbr 5141 ‘cfv 6537 (class class class)co 7405 0cc0 11112 1c1 11113 + caddc 11115 · cmul 11117 ≤ cle 11253 − cmin 11448 ℕcn 12216 2c2 12271 3c3 12272 4c4 12273 9c9 12278 ℤcz 12562 ;cdc 12681 ℤ≥cuz 12826 mod cmo 13840 ↑cexp 14032 ℙcprime 16615 FPPr cfppr 46964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-rp 12981 df-fl 13763 df-mod 13841 df-seq 13973 df-exp 14033 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-dvds 16205 df-prm 16616 df-fppr 46965 |
This theorem is referenced by: nfermltl2rev 46983 |
Copyright terms: Public domain | W3C validator |