| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 341fppr2 | Structured version Visualization version GIF version | ||
| Description: 341 is the (smallest) Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023.) |
| Ref | Expression |
|---|---|
| 341fppr2 | ⊢ ;;341 ∈ ( FPPr ‘2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4z 12528 | . . 3 ⊢ 4 ∈ ℤ | |
| 2 | 3nn0 12421 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 3 | 4nn0 12422 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12625 | . . . . 5 ⊢ ;34 ∈ ℕ0 |
| 5 | 1nn 12158 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 6 | 4, 5 | decnncl 12630 | . . . 4 ⊢ ;;341 ∈ ℕ |
| 7 | 6 | nnzi 12518 | . . 3 ⊢ ;;341 ∈ ℤ |
| 8 | 4nn 12230 | . . . . 5 ⊢ 4 ∈ ℕ | |
| 9 | 2, 8 | decnncl 12630 | . . . 4 ⊢ ;34 ∈ ℕ |
| 10 | 1nn0 12419 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 11 | 4re 12231 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 12 | 9re 12246 | . . . . 5 ⊢ 9 ∈ ℝ | |
| 13 | 4lt9 12345 | . . . . 5 ⊢ 4 < 9 | |
| 14 | 11, 12, 13 | ltleii 11258 | . . . 4 ⊢ 4 ≤ 9 |
| 15 | 9, 10, 3, 14 | declei 12646 | . . 3 ⊢ 4 ≤ ;;341 |
| 16 | eluz2 12760 | . . 3 ⊢ (;;341 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ ;;341 ∈ ℤ ∧ 4 ≤ ;;341)) | |
| 17 | 1, 7, 15, 16 | mpbir3an 1342 | . 2 ⊢ ;;341 ∈ (ℤ≥‘4) |
| 18 | 2z 12526 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 19 | 10, 5 | decnncl 12630 | . . . . . 6 ⊢ ;11 ∈ ℕ |
| 20 | 19 | nnzi 12518 | . . . . 5 ⊢ ;11 ∈ ℤ |
| 21 | 2nn0 12420 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 22 | 2re 12221 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 23 | 2lt9 12347 | . . . . . . 7 ⊢ 2 < 9 | |
| 24 | 22, 12, 23 | ltleii 11258 | . . . . . 6 ⊢ 2 ≤ 9 |
| 25 | 5, 10, 21, 24 | declei 12646 | . . . . 5 ⊢ 2 ≤ ;11 |
| 26 | eluz2 12760 | . . . . 5 ⊢ (;11 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;11 ∈ ℤ ∧ 2 ≤ ;11)) | |
| 27 | 18, 20, 25, 26 | mpbir3an 1342 | . . . 4 ⊢ ;11 ∈ (ℤ≥‘2) |
| 28 | 2, 5 | decnncl 12630 | . . . . . 6 ⊢ ;31 ∈ ℕ |
| 29 | 28 | nnzi 12518 | . . . . 5 ⊢ ;31 ∈ ℤ |
| 30 | 3nn 12226 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 31 | 30, 10, 21, 24 | declei 12646 | . . . . 5 ⊢ 2 ≤ ;31 |
| 32 | eluz2 12760 | . . . . 5 ⊢ (;31 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;31 ∈ ℤ ∧ 2 ≤ ;31)) | |
| 33 | 18, 29, 31, 32 | mpbir3an 1342 | . . . 4 ⊢ ;31 ∈ (ℤ≥‘2) |
| 34 | nprm 16618 | . . . 4 ⊢ ((;11 ∈ (ℤ≥‘2) ∧ ;31 ∈ (ℤ≥‘2)) → ¬ (;11 · ;31) ∈ ℙ) | |
| 35 | 27, 33, 34 | mp2an 692 | . . 3 ⊢ ¬ (;11 · ;31) ∈ ℙ |
| 36 | df-nel 3030 | . . . 4 ⊢ (;;341 ∉ ℙ ↔ ¬ ;;341 ∈ ℙ) | |
| 37 | 11t31e341 47736 | . . . . . 6 ⊢ (;11 · ;31) = ;;341 | |
| 38 | 37 | eqcomi 2738 | . . . . 5 ⊢ ;;341 = (;11 · ;31) |
| 39 | 38 | eleq1i 2819 | . . . 4 ⊢ (;;341 ∈ ℙ ↔ (;11 · ;31) ∈ ℙ) |
| 40 | 36, 39 | xchbinx 334 | . . 3 ⊢ (;;341 ∉ ℙ ↔ ¬ (;11 · ;31) ∈ ℙ) |
| 41 | 35, 40 | mpbir 231 | . 2 ⊢ ;;341 ∉ ℙ |
| 42 | eqid 2729 | . . . . . 6 ⊢ ;;341 = ;;341 | |
| 43 | eqid 2729 | . . . . . 6 ⊢ (;34 + 1) = (;34 + 1) | |
| 44 | 1m1e0 12219 | . . . . . 6 ⊢ (1 − 1) = 0 | |
| 45 | 4, 10, 10, 42, 43, 44 | decsubi 12673 | . . . . 5 ⊢ (;;341 − 1) = ;;340 |
| 46 | 45 | oveq2i 7364 | . . . 4 ⊢ (2↑(;;341 − 1)) = (2↑;;340) |
| 47 | 46 | oveq1i 7363 | . . 3 ⊢ ((2↑(;;341 − 1)) mod ;;341) = ((2↑;;340) mod ;;341) |
| 48 | 2exp340mod341 47737 | . . 3 ⊢ ((2↑;;340) mod ;;341) = 1 | |
| 49 | 47, 48 | eqtri 2752 | . 2 ⊢ ((2↑(;;341 − 1)) mod ;;341) = 1 |
| 50 | 2nn 12220 | . . 3 ⊢ 2 ∈ ℕ | |
| 51 | fpprel 47732 | . . 3 ⊢ (2 ∈ ℕ → (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1))) | |
| 52 | 50, 51 | ax-mp 5 | . 2 ⊢ (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1)) |
| 53 | 17, 41, 49, 52 | mpbir3an 1342 | 1 ⊢ ;;341 ∈ ( FPPr ‘2) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 ≤ cle 11169 − cmin 11366 ℕcn 12147 2c2 12202 3c3 12203 4c4 12204 9c9 12209 ℤcz 12490 ;cdc 12610 ℤ≥cuz 12754 mod cmo 13792 ↑cexp 13987 ℙcprime 16601 FPPr cfppr 47728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-rp 12913 df-fl 13715 df-mod 13793 df-seq 13928 df-exp 13988 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-dvds 16183 df-prm 16602 df-fppr 47729 |
| This theorem is referenced by: nfermltl2rev 47747 |
| Copyright terms: Public domain | W3C validator |