| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 341fppr2 | Structured version Visualization version GIF version | ||
| Description: 341 is the (smallest) Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023.) |
| Ref | Expression |
|---|---|
| 341fppr2 | ⊢ ;;341 ∈ ( FPPr ‘2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4z 12516 | . . 3 ⊢ 4 ∈ ℤ | |
| 2 | 3nn0 12410 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 3 | 4nn0 12411 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12613 | . . . . 5 ⊢ ;34 ∈ ℕ0 |
| 5 | 1nn 12147 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 6 | 4, 5 | decnncl 12618 | . . . 4 ⊢ ;;341 ∈ ℕ |
| 7 | 6 | nnzi 12506 | . . 3 ⊢ ;;341 ∈ ℤ |
| 8 | 4nn 12219 | . . . . 5 ⊢ 4 ∈ ℕ | |
| 9 | 2, 8 | decnncl 12618 | . . . 4 ⊢ ;34 ∈ ℕ |
| 10 | 1nn0 12408 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 11 | 4re 12220 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 12 | 9re 12235 | . . . . 5 ⊢ 9 ∈ ℝ | |
| 13 | 4lt9 12334 | . . . . 5 ⊢ 4 < 9 | |
| 14 | 11, 12, 13 | ltleii 11247 | . . . 4 ⊢ 4 ≤ 9 |
| 15 | 9, 10, 3, 14 | declei 12634 | . . 3 ⊢ 4 ≤ ;;341 |
| 16 | eluz2 12748 | . . 3 ⊢ (;;341 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ ;;341 ∈ ℤ ∧ 4 ≤ ;;341)) | |
| 17 | 1, 7, 15, 16 | mpbir3an 1342 | . 2 ⊢ ;;341 ∈ (ℤ≥‘4) |
| 18 | 2z 12514 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 19 | 10, 5 | decnncl 12618 | . . . . . 6 ⊢ ;11 ∈ ℕ |
| 20 | 19 | nnzi 12506 | . . . . 5 ⊢ ;11 ∈ ℤ |
| 21 | 2nn0 12409 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 22 | 2re 12210 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 23 | 2lt9 12336 | . . . . . . 7 ⊢ 2 < 9 | |
| 24 | 22, 12, 23 | ltleii 11247 | . . . . . 6 ⊢ 2 ≤ 9 |
| 25 | 5, 10, 21, 24 | declei 12634 | . . . . 5 ⊢ 2 ≤ ;11 |
| 26 | eluz2 12748 | . . . . 5 ⊢ (;11 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;11 ∈ ℤ ∧ 2 ≤ ;11)) | |
| 27 | 18, 20, 25, 26 | mpbir3an 1342 | . . . 4 ⊢ ;11 ∈ (ℤ≥‘2) |
| 28 | 2, 5 | decnncl 12618 | . . . . . 6 ⊢ ;31 ∈ ℕ |
| 29 | 28 | nnzi 12506 | . . . . 5 ⊢ ;31 ∈ ℤ |
| 30 | 3nn 12215 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 31 | 30, 10, 21, 24 | declei 12634 | . . . . 5 ⊢ 2 ≤ ;31 |
| 32 | eluz2 12748 | . . . . 5 ⊢ (;31 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;31 ∈ ℤ ∧ 2 ≤ ;31)) | |
| 33 | 18, 29, 31, 32 | mpbir3an 1342 | . . . 4 ⊢ ;31 ∈ (ℤ≥‘2) |
| 34 | nprm 16606 | . . . 4 ⊢ ((;11 ∈ (ℤ≥‘2) ∧ ;31 ∈ (ℤ≥‘2)) → ¬ (;11 · ;31) ∈ ℙ) | |
| 35 | 27, 33, 34 | mp2an 692 | . . 3 ⊢ ¬ (;11 · ;31) ∈ ℙ |
| 36 | df-nel 3034 | . . . 4 ⊢ (;;341 ∉ ℙ ↔ ¬ ;;341 ∈ ℙ) | |
| 37 | 11t31e341 47894 | . . . . . 6 ⊢ (;11 · ;31) = ;;341 | |
| 38 | 37 | eqcomi 2742 | . . . . 5 ⊢ ;;341 = (;11 · ;31) |
| 39 | 38 | eleq1i 2824 | . . . 4 ⊢ (;;341 ∈ ℙ ↔ (;11 · ;31) ∈ ℙ) |
| 40 | 36, 39 | xchbinx 334 | . . 3 ⊢ (;;341 ∉ ℙ ↔ ¬ (;11 · ;31) ∈ ℙ) |
| 41 | 35, 40 | mpbir 231 | . 2 ⊢ ;;341 ∉ ℙ |
| 42 | eqid 2733 | . . . . . 6 ⊢ ;;341 = ;;341 | |
| 43 | eqid 2733 | . . . . . 6 ⊢ (;34 + 1) = (;34 + 1) | |
| 44 | 1m1e0 12208 | . . . . . 6 ⊢ (1 − 1) = 0 | |
| 45 | 4, 10, 10, 42, 43, 44 | decsubi 12661 | . . . . 5 ⊢ (;;341 − 1) = ;;340 |
| 46 | 45 | oveq2i 7366 | . . . 4 ⊢ (2↑(;;341 − 1)) = (2↑;;340) |
| 47 | 46 | oveq1i 7365 | . . 3 ⊢ ((2↑(;;341 − 1)) mod ;;341) = ((2↑;;340) mod ;;341) |
| 48 | 2exp340mod341 47895 | . . 3 ⊢ ((2↑;;340) mod ;;341) = 1 | |
| 49 | 47, 48 | eqtri 2756 | . 2 ⊢ ((2↑(;;341 − 1)) mod ;;341) = 1 |
| 50 | 2nn 12209 | . . 3 ⊢ 2 ∈ ℕ | |
| 51 | fpprel 47890 | . . 3 ⊢ (2 ∈ ℕ → (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1))) | |
| 52 | 50, 51 | ax-mp 5 | . 2 ⊢ (;;341 ∈ ( FPPr ‘2) ↔ (;;341 ∈ (ℤ≥‘4) ∧ ;;341 ∉ ℙ ∧ ((2↑(;;341 − 1)) mod ;;341) = 1)) |
| 53 | 17, 41, 49, 52 | mpbir3an 1342 | 1 ⊢ ;;341 ∈ ( FPPr ‘2) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∉ wnel 3033 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 0cc0 11017 1c1 11018 + caddc 11020 · cmul 11022 ≤ cle 11158 − cmin 11355 ℕcn 12136 2c2 12191 3c3 12192 4c4 12193 9c9 12198 ℤcz 12479 ;cdc 12598 ℤ≥cuz 12742 mod cmo 13780 ↑cexp 13975 ℙcprime 16589 FPPr cfppr 47886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-rp 12897 df-fl 13703 df-mod 13781 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-dvds 16171 df-prm 16590 df-fppr 47887 |
| This theorem is referenced by: nfermltl2rev 47905 |
| Copyright terms: Public domain | W3C validator |