| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhssnvt | Structured version Visualization version GIF version | ||
| Description: Normed complex vector space property of a subspace. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhssnvt.1 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
| Ref | Expression |
|---|---|
| hhssnvt | ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ NrmCVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssnvt.1 | . . . 4 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
| 2 | xpeq1 5655 | . . . . . . . 8 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → (𝐻 × 𝐻) = (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × 𝐻)) | |
| 3 | xpeq2 5662 | . . . . . . . 8 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × 𝐻) = (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))) | |
| 4 | 2, 3 | eqtrd 2765 | . . . . . . 7 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → (𝐻 × 𝐻) = (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))) |
| 5 | 4 | reseq2d 5953 | . . . . . 6 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → ( +ℎ ↾ (𝐻 × 𝐻)) = ( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))) |
| 6 | xpeq2 5662 | . . . . . . 7 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → (ℂ × 𝐻) = (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))) | |
| 7 | 6 | reseq2d 5953 | . . . . . 6 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → ( ·ℎ ↾ (ℂ × 𝐻)) = ( ·ℎ ↾ (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))) |
| 8 | 5, 7 | opeq12d 4848 | . . . . 5 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → 〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉 = 〈( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))), ( ·ℎ ↾ (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))〉) |
| 9 | reseq2 5948 | . . . . 5 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → (normℎ ↾ 𝐻) = (normℎ ↾ if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))) | |
| 10 | 8, 9 | opeq12d 4848 | . . . 4 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 = 〈〈( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))), ( ·ℎ ↾ (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))〉, (normℎ ↾ if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))〉) |
| 11 | 1, 10 | eqtrid 2777 | . . 3 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → 𝑊 = 〈〈( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))), ( ·ℎ ↾ (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))〉, (normℎ ↾ if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))〉) |
| 12 | 11 | eleq1d 2814 | . 2 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → (𝑊 ∈ NrmCVec ↔ 〈〈( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))), ( ·ℎ ↾ (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))〉, (normℎ ↾ if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))〉 ∈ NrmCVec)) |
| 13 | eqid 2730 | . . 3 ⊢ 〈〈( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))), ( ·ℎ ↾ (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))〉, (normℎ ↾ if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))〉 = 〈〈( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))), ( ·ℎ ↾ (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))〉, (normℎ ↾ if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))〉 | |
| 14 | h0elsh 31192 | . . . 4 ⊢ 0ℋ ∈ Sℋ | |
| 15 | 14 | elimel 4561 | . . 3 ⊢ if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) ∈ Sℋ |
| 16 | 13, 15 | hhssnv 31200 | . 2 ⊢ 〈〈( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))), ( ·ℎ ↾ (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))〉, (normℎ ↾ if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))〉 ∈ NrmCVec |
| 17 | 12, 16 | dedth 4550 | 1 ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ NrmCVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4491 〈cop 4598 × cxp 5639 ↾ cres 5643 ℂcc 11073 NrmCVeccnv 30520 +ℎ cva 30856 ·ℎ csm 30857 normℎcno 30859 Sℋ csh 30864 0ℋc0h 30871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 ax-hilex 30935 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvmulass 30943 ax-hvdistr1 30944 ax-hvdistr2 30945 ax-hvmul0 30946 ax-hfi 31015 ax-his1 31018 ax-his2 31019 ax-his3 31020 ax-his4 31021 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-icc 13320 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-top 22788 df-topon 22805 df-bases 22840 df-lm 23123 df-haus 23209 df-grpo 30429 df-gid 30430 df-ginv 30431 df-gdiv 30432 df-ablo 30481 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-vs 30535 df-nmcv 30536 df-ims 30537 df-hnorm 30904 df-hba 30905 df-hvsub 30907 df-hlim 30908 df-sh 31143 df-ch 31157 df-ch0 31189 |
| This theorem is referenced by: hhsst 31202 |
| Copyright terms: Public domain | W3C validator |