| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhssnvt | Structured version Visualization version GIF version | ||
| Description: Normed complex vector space property of a subspace. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhssnvt.1 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
| Ref | Expression |
|---|---|
| hhssnvt | ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ NrmCVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssnvt.1 | . . . 4 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
| 2 | xpeq1 5628 | . . . . . . . 8 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → (𝐻 × 𝐻) = (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × 𝐻)) | |
| 3 | xpeq2 5635 | . . . . . . . 8 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × 𝐻) = (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))) | |
| 4 | 2, 3 | eqtrd 2766 | . . . . . . 7 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → (𝐻 × 𝐻) = (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))) |
| 5 | 4 | reseq2d 5927 | . . . . . 6 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → ( +ℎ ↾ (𝐻 × 𝐻)) = ( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))) |
| 6 | xpeq2 5635 | . . . . . . 7 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → (ℂ × 𝐻) = (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))) | |
| 7 | 6 | reseq2d 5927 | . . . . . 6 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → ( ·ℎ ↾ (ℂ × 𝐻)) = ( ·ℎ ↾ (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))) |
| 8 | 5, 7 | opeq12d 4830 | . . . . 5 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → 〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉 = 〈( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))), ( ·ℎ ↾ (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))〉) |
| 9 | reseq2 5922 | . . . . 5 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → (normℎ ↾ 𝐻) = (normℎ ↾ if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))) | |
| 10 | 8, 9 | opeq12d 4830 | . . . 4 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 = 〈〈( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))), ( ·ℎ ↾ (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))〉, (normℎ ↾ if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))〉) |
| 11 | 1, 10 | eqtrid 2778 | . . 3 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → 𝑊 = 〈〈( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))), ( ·ℎ ↾ (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))〉, (normℎ ↾ if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))〉) |
| 12 | 11 | eleq1d 2816 | . 2 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) → (𝑊 ∈ NrmCVec ↔ 〈〈( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))), ( ·ℎ ↾ (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))〉, (normℎ ↾ if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))〉 ∈ NrmCVec)) |
| 13 | eqid 2731 | . . 3 ⊢ 〈〈( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))), ( ·ℎ ↾ (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))〉, (normℎ ↾ if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))〉 = 〈〈( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))), ( ·ℎ ↾ (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))〉, (normℎ ↾ if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))〉 | |
| 14 | h0elsh 31236 | . . . 4 ⊢ 0ℋ ∈ Sℋ | |
| 15 | 14 | elimel 4542 | . . 3 ⊢ if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) ∈ Sℋ |
| 16 | 13, 15 | hhssnv 31244 | . 2 ⊢ 〈〈( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, 0ℋ) × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))), ( ·ℎ ↾ (ℂ × if(𝐻 ∈ Sℋ , 𝐻, 0ℋ)))〉, (normℎ ↾ if(𝐻 ∈ Sℋ , 𝐻, 0ℋ))〉 ∈ NrmCVec |
| 17 | 12, 16 | dedth 4531 | 1 ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ NrmCVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ifcif 4472 〈cop 4579 × cxp 5612 ↾ cres 5616 ℂcc 11004 NrmCVeccnv 30564 +ℎ cva 30900 ·ℎ csm 30901 normℎcno 30903 Sℋ csh 30908 0ℋc0h 30915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 ax-hilex 30979 ax-hfvadd 30980 ax-hvcom 30981 ax-hvass 30982 ax-hv0cl 30983 ax-hvaddid 30984 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvmulass 30987 ax-hvdistr1 30988 ax-hvdistr2 30989 ax-hvmul0 30990 ax-hfi 31059 ax-his1 31062 ax-his2 31063 ax-his3 31064 ax-his4 31065 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-icc 13252 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-top 22809 df-topon 22826 df-bases 22861 df-lm 23144 df-haus 23230 df-grpo 30473 df-gid 30474 df-ginv 30475 df-gdiv 30476 df-ablo 30525 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-vs 30579 df-nmcv 30580 df-ims 30581 df-hnorm 30948 df-hba 30949 df-hvsub 30951 df-hlim 30952 df-sh 31187 df-ch 31201 df-ch0 31233 |
| This theorem is referenced by: hhsst 31246 |
| Copyright terms: Public domain | W3C validator |