![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhssablo | Structured version Visualization version GIF version |
Description: Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhssablo | ⊢ (𝐻 ∈ Sℋ → ( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5417 | . . . . 5 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, ℋ) → (𝐻 × 𝐻) = (if(𝐻 ∈ Sℋ , 𝐻, ℋ) × 𝐻)) | |
2 | xpeq2 5424 | . . . . 5 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, ℋ) → (if(𝐻 ∈ Sℋ , 𝐻, ℋ) × 𝐻) = (if(𝐻 ∈ Sℋ , 𝐻, ℋ) × if(𝐻 ∈ Sℋ , 𝐻, ℋ))) | |
3 | 1, 2 | eqtrd 2807 | . . . 4 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, ℋ) → (𝐻 × 𝐻) = (if(𝐻 ∈ Sℋ , 𝐻, ℋ) × if(𝐻 ∈ Sℋ , 𝐻, ℋ))) |
4 | 3 | reseq2d 5692 | . . 3 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, ℋ) → ( +ℎ ↾ (𝐻 × 𝐻)) = ( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, ℋ) × if(𝐻 ∈ Sℋ , 𝐻, ℋ)))) |
5 | 4 | eleq1d 2843 | . 2 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, ℋ) → (( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp ↔ ( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, ℋ) × if(𝐻 ∈ Sℋ , 𝐻, ℋ))) ∈ AbelOp)) |
6 | helsh 28816 | . . . 4 ⊢ ℋ ∈ Sℋ | |
7 | 6 | elimel 4411 | . . 3 ⊢ if(𝐻 ∈ Sℋ , 𝐻, ℋ) ∈ Sℋ |
8 | 7 | hhssabloi 28833 | . 2 ⊢ ( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, ℋ) × if(𝐻 ∈ Sℋ , 𝐻, ℋ))) ∈ AbelOp |
9 | 5, 8 | dedth 4400 | 1 ⊢ (𝐻 ∈ Sℋ → ( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 ifcif 4344 × cxp 5401 ↾ cres 5405 AbelOpcablo 28113 ℋchba 28490 +ℎ cva 28491 Sℋ csh 28499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 ax-hilex 28570 ax-hfvadd 28571 ax-hvcom 28572 ax-hvass 28573 ax-hv0cl 28574 ax-hvaddid 28575 ax-hfvmul 28576 ax-hvmulid 28577 ax-hvmulass 28578 ax-hvdistr1 28579 ax-hvdistr2 28580 ax-hvmul0 28581 ax-hfi 28650 ax-his1 28653 ax-his2 28654 ax-his3 28655 ax-his4 28656 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-map 8206 df-en 8305 df-dom 8306 df-sdom 8307 df-sup 8699 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-n0 11706 df-z 11792 df-uz 12057 df-rp 12203 df-seq 13183 df-exp 13243 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 df-grpo 28062 df-gid 28063 df-ginv 28064 df-ablo 28114 df-vc 28128 df-nv 28161 df-va 28164 df-ba 28165 df-sm 28166 df-0v 28167 df-nmcv 28169 df-hnorm 28539 df-hba 28540 df-hvsub 28542 df-hlim 28543 df-sh 28778 df-ch 28792 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |