![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhssablo | Structured version Visualization version GIF version |
Description: Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhssablo | ⊢ (𝐻 ∈ Sℋ → ( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5702 | . . . . 5 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, ℋ) → (𝐻 × 𝐻) = (if(𝐻 ∈ Sℋ , 𝐻, ℋ) × 𝐻)) | |
2 | xpeq2 5709 | . . . . 5 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, ℋ) → (if(𝐻 ∈ Sℋ , 𝐻, ℋ) × 𝐻) = (if(𝐻 ∈ Sℋ , 𝐻, ℋ) × if(𝐻 ∈ Sℋ , 𝐻, ℋ))) | |
3 | 1, 2 | eqtrd 2774 | . . . 4 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, ℋ) → (𝐻 × 𝐻) = (if(𝐻 ∈ Sℋ , 𝐻, ℋ) × if(𝐻 ∈ Sℋ , 𝐻, ℋ))) |
4 | 3 | reseq2d 5999 | . . 3 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, ℋ) → ( +ℎ ↾ (𝐻 × 𝐻)) = ( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, ℋ) × if(𝐻 ∈ Sℋ , 𝐻, ℋ)))) |
5 | 4 | eleq1d 2823 | . 2 ⊢ (𝐻 = if(𝐻 ∈ Sℋ , 𝐻, ℋ) → (( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp ↔ ( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, ℋ) × if(𝐻 ∈ Sℋ , 𝐻, ℋ))) ∈ AbelOp)) |
6 | helsh 31273 | . . . 4 ⊢ ℋ ∈ Sℋ | |
7 | 6 | elimel 4599 | . . 3 ⊢ if(𝐻 ∈ Sℋ , 𝐻, ℋ) ∈ Sℋ |
8 | 7 | hhssabloi 31290 | . 2 ⊢ ( +ℎ ↾ (if(𝐻 ∈ Sℋ , 𝐻, ℋ) × if(𝐻 ∈ Sℋ , 𝐻, ℋ))) ∈ AbelOp |
9 | 5, 8 | dedth 4588 | 1 ⊢ (𝐻 ∈ Sℋ → ( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ifcif 4530 × cxp 5686 ↾ cres 5690 AbelOpcablo 30572 ℋchba 30947 +ℎ cva 30948 Sℋ csh 30956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-hilex 31027 ax-hfvadd 31028 ax-hvcom 31029 ax-hvass 31030 ax-hv0cl 31031 ax-hvaddid 31032 ax-hfvmul 31033 ax-hvmulid 31034 ax-hvmulass 31035 ax-hvdistr1 31036 ax-hvdistr2 31037 ax-hvmul0 31038 ax-hfi 31107 ax-his1 31110 ax-his2 31111 ax-his3 31112 ax-his4 31113 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-grpo 30521 df-gid 30522 df-ginv 30523 df-ablo 30573 df-vc 30587 df-nv 30620 df-va 30623 df-ba 30624 df-sm 30625 df-0v 30626 df-nmcv 30628 df-hnorm 30996 df-hba 30997 df-hvsub 30999 df-hlim 31000 df-sh 31235 df-ch 31249 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |