![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zextle | Structured version Visualization version GIF version |
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.) |
Ref | Expression |
---|---|
zextle | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12643 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
2 | 1 | leidd 11856 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ≤ 𝑀) |
3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 ≤ 𝑀) |
4 | breq1 5169 | . . . . . . . . 9 ⊢ (𝑘 = 𝑀 → (𝑘 ≤ 𝑀 ↔ 𝑀 ≤ 𝑀)) | |
5 | breq1 5169 | . . . . . . . . 9 ⊢ (𝑘 = 𝑀 → (𝑘 ≤ 𝑁 ↔ 𝑀 ≤ 𝑁)) | |
6 | 4, 5 | bibi12d 345 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → ((𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁) ↔ (𝑀 ≤ 𝑀 ↔ 𝑀 ≤ 𝑁))) |
7 | 6 | rspcva 3633 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → (𝑀 ≤ 𝑀 ↔ 𝑀 ≤ 𝑁)) |
8 | 3, 7 | mpbid 232 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 ≤ 𝑁) |
9 | 8 | adantlr 714 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 ≤ 𝑁) |
10 | zre 12643 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
11 | 10 | leidd 11856 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ 𝑁) |
12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑁 ≤ 𝑁) |
13 | breq1 5169 | . . . . . . . . 9 ⊢ (𝑘 = 𝑁 → (𝑘 ≤ 𝑀 ↔ 𝑁 ≤ 𝑀)) | |
14 | breq1 5169 | . . . . . . . . 9 ⊢ (𝑘 = 𝑁 → (𝑘 ≤ 𝑁 ↔ 𝑁 ≤ 𝑁)) | |
15 | 13, 14 | bibi12d 345 | . . . . . . . 8 ⊢ (𝑘 = 𝑁 → ((𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁) ↔ (𝑁 ≤ 𝑀 ↔ 𝑁 ≤ 𝑁))) |
16 | 15 | rspcva 3633 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → (𝑁 ≤ 𝑀 ↔ 𝑁 ≤ 𝑁)) |
17 | 12, 16 | mpbird 257 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑁 ≤ 𝑀) |
18 | 17 | adantll 713 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑁 ≤ 𝑀) |
19 | 9, 18 | jca 511 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) |
20 | 19 | ex 412 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁) → (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) |
21 | letri3 11375 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) | |
22 | 1, 10, 21 | syl2an 595 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) |
23 | 20, 22 | sylibrd 259 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁) → 𝑀 = 𝑁)) |
24 | 23 | 3impia 1117 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ℝcr 11183 ≤ cle 11325 ℤcz 12639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-neg 11523 df-z 12640 |
This theorem is referenced by: zextlt 12717 |
Copyright terms: Public domain | W3C validator |