|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > zextle | Structured version Visualization version GIF version | ||
| Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.) | 
| Ref | Expression | 
|---|---|
| zextle | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 = 𝑁) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zre 12617 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 2 | 1 | leidd 11829 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ≤ 𝑀) | 
| 3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 ≤ 𝑀) | 
| 4 | breq1 5146 | . . . . . . . . 9 ⊢ (𝑘 = 𝑀 → (𝑘 ≤ 𝑀 ↔ 𝑀 ≤ 𝑀)) | |
| 5 | breq1 5146 | . . . . . . . . 9 ⊢ (𝑘 = 𝑀 → (𝑘 ≤ 𝑁 ↔ 𝑀 ≤ 𝑁)) | |
| 6 | 4, 5 | bibi12d 345 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → ((𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁) ↔ (𝑀 ≤ 𝑀 ↔ 𝑀 ≤ 𝑁))) | 
| 7 | 6 | rspcva 3620 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → (𝑀 ≤ 𝑀 ↔ 𝑀 ≤ 𝑁)) | 
| 8 | 3, 7 | mpbid 232 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 ≤ 𝑁) | 
| 9 | 8 | adantlr 715 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 ≤ 𝑁) | 
| 10 | zre 12617 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 11 | 10 | leidd 11829 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ 𝑁) | 
| 12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑁 ≤ 𝑁) | 
| 13 | breq1 5146 | . . . . . . . . 9 ⊢ (𝑘 = 𝑁 → (𝑘 ≤ 𝑀 ↔ 𝑁 ≤ 𝑀)) | |
| 14 | breq1 5146 | . . . . . . . . 9 ⊢ (𝑘 = 𝑁 → (𝑘 ≤ 𝑁 ↔ 𝑁 ≤ 𝑁)) | |
| 15 | 13, 14 | bibi12d 345 | . . . . . . . 8 ⊢ (𝑘 = 𝑁 → ((𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁) ↔ (𝑁 ≤ 𝑀 ↔ 𝑁 ≤ 𝑁))) | 
| 16 | 15 | rspcva 3620 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → (𝑁 ≤ 𝑀 ↔ 𝑁 ≤ 𝑁)) | 
| 17 | 12, 16 | mpbird 257 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑁 ≤ 𝑀) | 
| 18 | 17 | adantll 714 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑁 ≤ 𝑀) | 
| 19 | 9, 18 | jca 511 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) | 
| 20 | 19 | ex 412 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁) → (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) | 
| 21 | letri3 11346 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) | |
| 22 | 1, 10, 21 | syl2an 596 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) | 
| 23 | 20, 22 | sylibrd 259 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁) → 𝑀 = 𝑁)) | 
| 24 | 23 | 3impia 1118 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 = 𝑁) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 class class class wbr 5143 ℝcr 11154 ≤ cle 11296 ℤcz 12613 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-pre-lttri 11229 ax-pre-lttrn 11230 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-neg 11495 df-z 12614 | 
| This theorem is referenced by: zextlt 12692 | 
| Copyright terms: Public domain | W3C validator |