MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zextle Structured version   Visualization version   GIF version

Theorem zextle 12635
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
Assertion
Ref Expression
zextle ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀 = 𝑁)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem zextle
StepHypRef Expression
1 zre 12562 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
21leidd 11780 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀𝑀)
32adantr 482 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀𝑀)
4 breq1 5152 . . . . . . . . 9 (𝑘 = 𝑀 → (𝑘𝑀𝑀𝑀))
5 breq1 5152 . . . . . . . . 9 (𝑘 = 𝑀 → (𝑘𝑁𝑀𝑁))
64, 5bibi12d 346 . . . . . . . 8 (𝑘 = 𝑀 → ((𝑘𝑀𝑘𝑁) ↔ (𝑀𝑀𝑀𝑁)))
76rspcva 3611 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → (𝑀𝑀𝑀𝑁))
83, 7mpbid 231 . . . . . 6 ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀𝑁)
98adantlr 714 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀𝑁)
10 zre 12562 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1110leidd 11780 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁𝑁)
1211adantr 482 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑁𝑁)
13 breq1 5152 . . . . . . . . 9 (𝑘 = 𝑁 → (𝑘𝑀𝑁𝑀))
14 breq1 5152 . . . . . . . . 9 (𝑘 = 𝑁 → (𝑘𝑁𝑁𝑁))
1513, 14bibi12d 346 . . . . . . . 8 (𝑘 = 𝑁 → ((𝑘𝑀𝑘𝑁) ↔ (𝑁𝑀𝑁𝑁)))
1615rspcva 3611 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → (𝑁𝑀𝑁𝑁))
1712, 16mpbird 257 . . . . . 6 ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑁𝑀)
1817adantll 713 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑁𝑀)
199, 18jca 513 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → (𝑀𝑁𝑁𝑀))
2019ex 414 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁) → (𝑀𝑁𝑁𝑀)))
21 letri3 11299 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
221, 10, 21syl2an 597 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2320, 22sylibrd 259 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁) → 𝑀 = 𝑁))
24233impia 1118 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062   class class class wbr 5149  cr 11109  cle 11249  cz 12558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-pre-lttri 11184  ax-pre-lttrn 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-neg 11447  df-z 12559
This theorem is referenced by:  zextlt  12636
  Copyright terms: Public domain W3C validator