MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zextle Structured version   Visualization version   GIF version

Theorem zextle 12250
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
Assertion
Ref Expression
zextle ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀 = 𝑁)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem zextle
StepHypRef Expression
1 zre 12180 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
21leidd 11398 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀𝑀)
32adantr 484 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀𝑀)
4 breq1 5056 . . . . . . . . 9 (𝑘 = 𝑀 → (𝑘𝑀𝑀𝑀))
5 breq1 5056 . . . . . . . . 9 (𝑘 = 𝑀 → (𝑘𝑁𝑀𝑁))
64, 5bibi12d 349 . . . . . . . 8 (𝑘 = 𝑀 → ((𝑘𝑀𝑘𝑁) ↔ (𝑀𝑀𝑀𝑁)))
76rspcva 3535 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → (𝑀𝑀𝑀𝑁))
83, 7mpbid 235 . . . . . 6 ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀𝑁)
98adantlr 715 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀𝑁)
10 zre 12180 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1110leidd 11398 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁𝑁)
1211adantr 484 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑁𝑁)
13 breq1 5056 . . . . . . . . 9 (𝑘 = 𝑁 → (𝑘𝑀𝑁𝑀))
14 breq1 5056 . . . . . . . . 9 (𝑘 = 𝑁 → (𝑘𝑁𝑁𝑁))
1513, 14bibi12d 349 . . . . . . . 8 (𝑘 = 𝑁 → ((𝑘𝑀𝑘𝑁) ↔ (𝑁𝑀𝑁𝑁)))
1615rspcva 3535 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → (𝑁𝑀𝑁𝑁))
1712, 16mpbird 260 . . . . . 6 ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑁𝑀)
1817adantll 714 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑁𝑀)
199, 18jca 515 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → (𝑀𝑁𝑁𝑀))
2019ex 416 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁) → (𝑀𝑁𝑁𝑀)))
21 letri3 10918 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
221, 10, 21syl2an 599 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2320, 22sylibrd 262 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁) → 𝑀 = 𝑁))
24233impia 1119 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061   class class class wbr 5053  cr 10728  cle 10868  cz 12176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-pre-lttri 10803  ax-pre-lttrn 10804
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-neg 11065  df-z 12177
This theorem is referenced by:  zextlt  12251
  Copyright terms: Public domain W3C validator