![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zextle | Structured version Visualization version GIF version |
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.) |
Ref | Expression |
---|---|
zextle | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 11797 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
2 | 1 | leidd 11007 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ≤ 𝑀) |
3 | 2 | adantr 473 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 ≤ 𝑀) |
4 | breq1 4932 | . . . . . . . . 9 ⊢ (𝑘 = 𝑀 → (𝑘 ≤ 𝑀 ↔ 𝑀 ≤ 𝑀)) | |
5 | breq1 4932 | . . . . . . . . 9 ⊢ (𝑘 = 𝑀 → (𝑘 ≤ 𝑁 ↔ 𝑀 ≤ 𝑁)) | |
6 | 4, 5 | bibi12d 338 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → ((𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁) ↔ (𝑀 ≤ 𝑀 ↔ 𝑀 ≤ 𝑁))) |
7 | 6 | rspcva 3533 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → (𝑀 ≤ 𝑀 ↔ 𝑀 ≤ 𝑁)) |
8 | 3, 7 | mpbid 224 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 ≤ 𝑁) |
9 | 8 | adantlr 702 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 ≤ 𝑁) |
10 | zre 11797 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
11 | 10 | leidd 11007 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ 𝑁) |
12 | 11 | adantr 473 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑁 ≤ 𝑁) |
13 | breq1 4932 | . . . . . . . . 9 ⊢ (𝑘 = 𝑁 → (𝑘 ≤ 𝑀 ↔ 𝑁 ≤ 𝑀)) | |
14 | breq1 4932 | . . . . . . . . 9 ⊢ (𝑘 = 𝑁 → (𝑘 ≤ 𝑁 ↔ 𝑁 ≤ 𝑁)) | |
15 | 13, 14 | bibi12d 338 | . . . . . . . 8 ⊢ (𝑘 = 𝑁 → ((𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁) ↔ (𝑁 ≤ 𝑀 ↔ 𝑁 ≤ 𝑁))) |
16 | 15 | rspcva 3533 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → (𝑁 ≤ 𝑀 ↔ 𝑁 ≤ 𝑁)) |
17 | 12, 16 | mpbird 249 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑁 ≤ 𝑀) |
18 | 17 | adantll 701 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑁 ≤ 𝑀) |
19 | 9, 18 | jca 504 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) |
20 | 19 | ex 405 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁) → (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) |
21 | letri3 10526 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) | |
22 | 1, 10, 21 | syl2an 586 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) |
23 | 20, 22 | sylibrd 251 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁) → 𝑀 = 𝑁)) |
24 | 23 | 3impia 1097 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ∀wral 3088 class class class wbr 4929 ℝcr 10334 ≤ cle 10475 ℤcz 11793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-resscn 10392 ax-pre-lttri 10409 ax-pre-lttrn 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-po 5326 df-so 5327 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-neg 10673 df-z 11794 |
This theorem is referenced by: zextlt 11869 |
Copyright terms: Public domain | W3C validator |