ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expp1d Unicode version

Theorem expp1d 10547
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
expcld.1  |-  ( ph  ->  A  e.  CC )
expcld.2  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
expp1d  |-  ( ph  ->  ( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )

Proof of Theorem expp1d
StepHypRef Expression
1 expcld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 expcld.2 . 2  |-  ( ph  ->  N  e.  NN0 )
3 expp1 10421 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )
41, 2, 3syl2anc 409 1  |-  ( ph  ->  ( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    e. wcel 2128  (class class class)co 5821   CCcc 7725   1c1 7728    + caddc 7730    x. cmul 7732   NN0cn0 9085   ^cexp 10413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7818  ax-resscn 7819  ax-1cn 7820  ax-1re 7821  ax-icn 7822  ax-addcl 7823  ax-addrcl 7824  ax-mulcl 7825  ax-mulrcl 7826  ax-addcom 7827  ax-mulcom 7828  ax-addass 7829  ax-mulass 7830  ax-distr 7831  ax-i2m1 7832  ax-0lt1 7833  ax-1rid 7834  ax-0id 7835  ax-rnegex 7836  ax-precex 7837  ax-cnre 7838  ax-pre-ltirr 7839  ax-pre-ltwlin 7840  ax-pre-lttrn 7841  ax-pre-apti 7842  ax-pre-ltadd 7843  ax-pre-mulgt0 7844  ax-pre-mulext 7845
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-frec 6335  df-pnf 7909  df-mnf 7910  df-xr 7911  df-ltxr 7912  df-le 7913  df-sub 8043  df-neg 8044  df-reap 8445  df-ap 8452  df-div 8541  df-inn 8829  df-n0 9086  df-z 9163  df-uz 9435  df-seqfrec 10340  df-exp 10414
This theorem is referenced by:  apexp1  10587  facubnd  10614  resqrexlemlo  10908  binomlem  11375  geosergap  11398  cvgratnnlemnexp  11416  cvgratnnlemmn  11417  fprodconst  11512  efcllemp  11550  oexpneg  11762  rplpwr  11905  oddpwdclemxy  12038  2sqpwodd  12045  eulerthlema  12097  prmdiv  12102
  Copyright terms: Public domain W3C validator