Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cau3 | GIF version |
Description: Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 10952 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.) |
Ref | Expression |
---|---|
cau3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
cau3 | ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cau3.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | uzssz 9506 | . . . 4 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
3 | 1, 2 | eqsstri 3179 | . . 3 ⊢ 𝑍 ⊆ ℤ |
4 | id 19 | . . 3 ⊢ ((𝐹‘𝑘) ∈ ℂ → (𝐹‘𝑘) ∈ ℂ) | |
5 | eleq1 2233 | . . 3 ⊢ ((𝐹‘𝑘) = (𝐹‘𝑗) → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) | |
6 | eleq1 2233 | . . 3 ⊢ ((𝐹‘𝑘) = (𝐹‘𝑚) → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) | |
7 | abssub 11065 | . . . 4 ⊢ (((𝐹‘𝑗) ∈ ℂ ∧ (𝐹‘𝑘) ∈ ℂ) → (abs‘((𝐹‘𝑗) − (𝐹‘𝑘))) = (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) | |
8 | 7 | 3adant1 1010 | . . 3 ⊢ ((⊤ ∧ (𝐹‘𝑗) ∈ ℂ ∧ (𝐹‘𝑘) ∈ ℂ) → (abs‘((𝐹‘𝑗) − (𝐹‘𝑘))) = (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
9 | abssub 11065 | . . . 4 ⊢ (((𝐹‘𝑚) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑗) − (𝐹‘𝑚)))) | |
10 | 9 | 3adant1 1010 | . . 3 ⊢ ((⊤ ∧ (𝐹‘𝑚) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑗) − (𝐹‘𝑚)))) |
11 | abs3lem 11075 | . . . 4 ⊢ ((((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑚) ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < (𝑥 / 2) ∧ (abs‘((𝐹‘𝑗) − (𝐹‘𝑚))) < (𝑥 / 2)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) | |
12 | 11 | 3adant1 1010 | . . 3 ⊢ ((⊤ ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑚) ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < (𝑥 / 2) ∧ (abs‘((𝐹‘𝑗) − (𝐹‘𝑚))) < (𝑥 / 2)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
13 | 3, 4, 5, 6, 8, 10, 12 | cau3lem 11078 | . 2 ⊢ (⊤ → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥))) |
14 | 13 | mptru 1357 | 1 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ⊤wtru 1349 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 ℝcr 7773 < clt 7954 − cmin 8090 / cdiv 8589 2c2 8929 ℤcz 9212 ℤ≥cuz 9487 ℝ+crp 9610 abscabs 10961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-rp 9611 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 |
This theorem is referenced by: cau4 11080 serf0 11315 |
Copyright terms: Public domain | W3C validator |