![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cau3 | GIF version |
Description: Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 11000 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.) |
Ref | Expression |
---|---|
cau3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
cau3 | ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cau3.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | uzssz 9550 | . . . 4 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
3 | 1, 2 | eqsstri 3189 | . . 3 ⊢ 𝑍 ⊆ ℤ |
4 | id 19 | . . 3 ⊢ ((𝐹‘𝑘) ∈ ℂ → (𝐹‘𝑘) ∈ ℂ) | |
5 | eleq1 2240 | . . 3 ⊢ ((𝐹‘𝑘) = (𝐹‘𝑗) → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) | |
6 | eleq1 2240 | . . 3 ⊢ ((𝐹‘𝑘) = (𝐹‘𝑚) → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) | |
7 | abssub 11113 | . . . 4 ⊢ (((𝐹‘𝑗) ∈ ℂ ∧ (𝐹‘𝑘) ∈ ℂ) → (abs‘((𝐹‘𝑗) − (𝐹‘𝑘))) = (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) | |
8 | 7 | 3adant1 1015 | . . 3 ⊢ ((⊤ ∧ (𝐹‘𝑗) ∈ ℂ ∧ (𝐹‘𝑘) ∈ ℂ) → (abs‘((𝐹‘𝑗) − (𝐹‘𝑘))) = (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
9 | abssub 11113 | . . . 4 ⊢ (((𝐹‘𝑚) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑗) − (𝐹‘𝑚)))) | |
10 | 9 | 3adant1 1015 | . . 3 ⊢ ((⊤ ∧ (𝐹‘𝑚) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑗) − (𝐹‘𝑚)))) |
11 | abs3lem 11123 | . . . 4 ⊢ ((((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑚) ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < (𝑥 / 2) ∧ (abs‘((𝐹‘𝑗) − (𝐹‘𝑚))) < (𝑥 / 2)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) | |
12 | 11 | 3adant1 1015 | . . 3 ⊢ ((⊤ ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑚) ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < (𝑥 / 2) ∧ (abs‘((𝐹‘𝑗) − (𝐹‘𝑚))) < (𝑥 / 2)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
13 | 3, 4, 5, 6, 8, 10, 12 | cau3lem 11126 | . 2 ⊢ (⊤ → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥))) |
14 | 13 | mptru 1362 | 1 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ⊤wtru 1354 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 class class class wbr 4005 ‘cfv 5218 (class class class)co 5878 ℂcc 7812 ℝcr 7813 < clt 7995 − cmin 8131 / cdiv 8632 2c2 8973 ℤcz 9256 ℤ≥cuz 9531 ℝ+crp 9656 abscabs 11009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 ax-pre-mulext 7932 ax-arch 7933 ax-caucvg 7934 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-frec 6395 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-reap 8535 df-ap 8542 df-div 8633 df-inn 8923 df-2 8981 df-3 8982 df-4 8983 df-n0 9180 df-z 9257 df-uz 9532 df-rp 9657 df-seqfrec 10449 df-exp 10523 df-cj 10854 df-re 10855 df-im 10856 df-rsqrt 11010 df-abs 11011 |
This theorem is referenced by: cau4 11128 serf0 11363 |
Copyright terms: Public domain | W3C validator |