Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cau3 GIF version

Theorem cau3 10899
 Description: Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 10772 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
cau3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
cau3 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑚,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝑀(𝑚)   𝑍(𝑚)

Proof of Theorem cau3
StepHypRef Expression
1 cau3.1 . . . 4 𝑍 = (ℤ𝑀)
2 uzssz 9357 . . . 4 (ℤ𝑀) ⊆ ℤ
31, 2eqsstri 3129 . . 3 𝑍 ⊆ ℤ
4 id 19 . . 3 ((𝐹𝑘) ∈ ℂ → (𝐹𝑘) ∈ ℂ)
5 eleq1 2202 . . 3 ((𝐹𝑘) = (𝐹𝑗) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
6 eleq1 2202 . . 3 ((𝐹𝑘) = (𝐹𝑚) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
7 abssub 10885 . . . 4 (((𝐹𝑗) ∈ ℂ ∧ (𝐹𝑘) ∈ ℂ) → (abs‘((𝐹𝑗) − (𝐹𝑘))) = (abs‘((𝐹𝑘) − (𝐹𝑗))))
873adant1 999 . . 3 ((⊤ ∧ (𝐹𝑗) ∈ ℂ ∧ (𝐹𝑘) ∈ ℂ) → (abs‘((𝐹𝑗) − (𝐹𝑘))) = (abs‘((𝐹𝑘) − (𝐹𝑗))))
9 abssub 10885 . . . 4 (((𝐹𝑚) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((𝐹𝑚) − (𝐹𝑗))) = (abs‘((𝐹𝑗) − (𝐹𝑚))))
1093adant1 999 . . 3 ((⊤ ∧ (𝐹𝑚) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((𝐹𝑚) − (𝐹𝑗))) = (abs‘((𝐹𝑗) − (𝐹𝑚))))
11 abs3lem 10895 . . . 4 ((((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑚) ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘((𝐹𝑘) − (𝐹𝑗))) < (𝑥 / 2) ∧ (abs‘((𝐹𝑗) − (𝐹𝑚))) < (𝑥 / 2)) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
12113adant1 999 . . 3 ((⊤ ∧ ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑚) ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘((𝐹𝑘) − (𝐹𝑗))) < (𝑥 / 2) ∧ (abs‘((𝐹𝑗) − (𝐹𝑚))) < (𝑥 / 2)) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
133, 4, 5, 6, 8, 10, 12cau3lem 10898 . 2 (⊤ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
1413mptru 1340 1 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331  ⊤wtru 1332   ∈ wcel 1480  ∀wral 2416  ∃wrex 2417   class class class wbr 3929  ‘cfv 5123  (class class class)co 5774  ℂcc 7630  ℝcr 7631   < clt 7812   − cmin 7945   / cdiv 8444  2c2 8783  ℤcz 9066  ℤ≥cuz 9338  ℝ+crp 9453  abscabs 10781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067  df-uz 9339  df-rp 9454  df-seqfrec 10231  df-exp 10305  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783 This theorem is referenced by:  cau4  10900  serf0  11133
 Copyright terms: Public domain W3C validator