![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cau3 | GIF version |
Description: Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 11011 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.) |
Ref | Expression |
---|---|
cau3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
cau3 | ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cau3.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | uzssz 9561 | . . . 4 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
3 | 1, 2 | eqsstri 3199 | . . 3 ⊢ 𝑍 ⊆ ℤ |
4 | id 19 | . . 3 ⊢ ((𝐹‘𝑘) ∈ ℂ → (𝐹‘𝑘) ∈ ℂ) | |
5 | eleq1 2250 | . . 3 ⊢ ((𝐹‘𝑘) = (𝐹‘𝑗) → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) | |
6 | eleq1 2250 | . . 3 ⊢ ((𝐹‘𝑘) = (𝐹‘𝑚) → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) | |
7 | abssub 11124 | . . . 4 ⊢ (((𝐹‘𝑗) ∈ ℂ ∧ (𝐹‘𝑘) ∈ ℂ) → (abs‘((𝐹‘𝑗) − (𝐹‘𝑘))) = (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) | |
8 | 7 | 3adant1 1016 | . . 3 ⊢ ((⊤ ∧ (𝐹‘𝑗) ∈ ℂ ∧ (𝐹‘𝑘) ∈ ℂ) → (abs‘((𝐹‘𝑗) − (𝐹‘𝑘))) = (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
9 | abssub 11124 | . . . 4 ⊢ (((𝐹‘𝑚) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑗) − (𝐹‘𝑚)))) | |
10 | 9 | 3adant1 1016 | . . 3 ⊢ ((⊤ ∧ (𝐹‘𝑚) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑗) − (𝐹‘𝑚)))) |
11 | abs3lem 11134 | . . . 4 ⊢ ((((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑚) ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < (𝑥 / 2) ∧ (abs‘((𝐹‘𝑗) − (𝐹‘𝑚))) < (𝑥 / 2)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) | |
12 | 11 | 3adant1 1016 | . . 3 ⊢ ((⊤ ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑚) ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < (𝑥 / 2) ∧ (abs‘((𝐹‘𝑗) − (𝐹‘𝑚))) < (𝑥 / 2)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
13 | 3, 4, 5, 6, 8, 10, 12 | cau3lem 11137 | . 2 ⊢ (⊤ → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥))) |
14 | 13 | mptru 1372 | 1 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1363 ⊤wtru 1364 ∈ wcel 2158 ∀wral 2465 ∃wrex 2466 class class class wbr 4015 ‘cfv 5228 (class class class)co 5888 ℂcc 7823 ℝcr 7824 < clt 8006 − cmin 8142 / cdiv 8643 2c2 8984 ℤcz 9267 ℤ≥cuz 9542 ℝ+crp 9667 abscabs 11020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 ax-arch 7944 ax-caucvg 7945 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-frec 6406 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-n0 9191 df-z 9268 df-uz 9543 df-rp 9668 df-seqfrec 10460 df-exp 10534 df-cj 10865 df-re 10866 df-im 10867 df-rsqrt 11021 df-abs 11022 |
This theorem is referenced by: cau4 11139 serf0 11374 |
Copyright terms: Public domain | W3C validator |