ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgcmpub GIF version

Theorem cvgcmpub 11417
Description: An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014.)
Hypotheses
Ref Expression
cvgcmp.1 𝑍 = (ℤ𝑀)
cvgcmp.2 (𝜑𝑁𝑍)
cvgcmp.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
cvgcmp.4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
cvgcmpub.5 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
cvgcmpub.6 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
cvgcmpub.7 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))
Assertion
Ref Expression
cvgcmpub (𝜑𝐵𝐴)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem cvgcmpub
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 cvgcmp.1 . 2 𝑍 = (ℤ𝑀)
2 cvgcmp.2 . . . 4 (𝜑𝑁𝑍)
32, 1eleqtrdi 2259 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzel2 9471 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
53, 4syl 14 . 2 (𝜑𝑀 ∈ ℤ)
6 cvgcmpub.6 . 2 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
7 cvgcmpub.5 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
8 cvgcmp.4 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
91, 5, 8serfre 10410 . . 3 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
109ffvelrnda 5620 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
11 cvgcmp.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
121, 5, 11serfre 10410 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
1312ffvelrnda 5620 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
14 simpr 109 . . . 4 ((𝜑𝑛𝑍) → 𝑛𝑍)
1514, 1eleqtrdi 2259 . . 3 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
16 simpl 108 . . . 4 ((𝜑𝑛𝑍) → 𝜑)
171eleq2i 2233 . . . . 5 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1817biimpri 132 . . . 4 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
1916, 18, 8syl2an 287 . . 3 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)
2016, 18, 11syl2an 287 . . 3 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
21 cvgcmpub.7 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))
2216, 18, 21syl2an 287 . . 3 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ≤ (𝐹𝑘))
2315, 19, 20, 22ser3le 10453 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ≤ (seq𝑀( + , 𝐹)‘𝑛))
241, 5, 6, 7, 10, 13, 23climle 11275 1 (𝜑𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136   class class class wbr 3982  cfv 5188  cr 7752   + caddc 7756  cle 7934  cz 9191  cuz 9466  seqcseq 10380  cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator