ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgcmpub GIF version

Theorem cvgcmpub 10870
Description: An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014.)
Hypotheses
Ref Expression
cvgcmp.1 𝑍 = (ℤ𝑀)
cvgcmp.2 (𝜑𝑁𝑍)
cvgcmp.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
cvgcmp.4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
cvgcmpub.5 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
cvgcmpub.6 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
cvgcmpub.7 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))
Assertion
Ref Expression
cvgcmpub (𝜑𝐵𝐴)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem cvgcmpub
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 cvgcmp.1 . 2 𝑍 = (ℤ𝑀)
2 cvgcmp.2 . . . 4 (𝜑𝑁𝑍)
32, 1syl6eleq 2180 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzel2 9024 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
53, 4syl 14 . 2 (𝜑𝑀 ∈ ℤ)
6 cvgcmpub.6 . 2 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
7 cvgcmpub.5 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
8 cvgcmp.4 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
91, 5, 8serfre 9901 . . 3 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
109ffvelrnda 5434 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
11 cvgcmp.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
121, 5, 11serfre 9901 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
1312ffvelrnda 5434 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
14 simpr 108 . . . 4 ((𝜑𝑛𝑍) → 𝑛𝑍)
1514, 1syl6eleq 2180 . . 3 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
16 simpl 107 . . . 4 ((𝜑𝑛𝑍) → 𝜑)
171eleq2i 2154 . . . . 5 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1817biimpri 131 . . . 4 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
1916, 18, 8syl2an 283 . . 3 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)
2016, 18, 11syl2an 283 . . 3 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
21 cvgcmpub.7 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))
2216, 18, 21syl2an 283 . . 3 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ≤ (𝐹𝑘))
2315, 19, 20, 22ser3le 9953 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ≤ (seq𝑀( + , 𝐹)‘𝑛))
241, 5, 6, 7, 10, 13, 23climle 10722 1 (𝜑𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438   class class class wbr 3845  cfv 5015  cr 7349   + caddc 7353  cle 7523  cz 8750  cuz 9019  seqcseq 9852  cli 10666
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-mulrcl 7444  ax-addcom 7445  ax-mulcom 7446  ax-addass 7447  ax-mulass 7448  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-1rid 7452  ax-0id 7453  ax-rnegex 7454  ax-precex 7455  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461  ax-pre-mulgt0 7462  ax-pre-mulext 7463  ax-arch 7464  ax-caucvg 7465
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-reap 8052  df-ap 8059  df-div 8140  df-inn 8423  df-2 8481  df-3 8482  df-4 8483  df-n0 8674  df-z 8751  df-uz 9020  df-rp 9135  df-fz 9425  df-fzo 9554  df-iseq 9853  df-seq3 9854  df-exp 9955  df-cj 10276  df-re 10277  df-im 10278  df-rsqrt 10431  df-abs 10432  df-clim 10667
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator