ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgcmpub GIF version

Theorem cvgcmpub 11439
Description: An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014.)
Hypotheses
Ref Expression
cvgcmp.1 𝑍 = (ℤ𝑀)
cvgcmp.2 (𝜑𝑁𝑍)
cvgcmp.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
cvgcmp.4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
cvgcmpub.5 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
cvgcmpub.6 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
cvgcmpub.7 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))
Assertion
Ref Expression
cvgcmpub (𝜑𝐵𝐴)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem cvgcmpub
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 cvgcmp.1 . 2 𝑍 = (ℤ𝑀)
2 cvgcmp.2 . . . 4 (𝜑𝑁𝑍)
32, 1eleqtrdi 2263 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzel2 9492 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
53, 4syl 14 . 2 (𝜑𝑀 ∈ ℤ)
6 cvgcmpub.6 . 2 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
7 cvgcmpub.5 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
8 cvgcmp.4 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
91, 5, 8serfre 10431 . . 3 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
109ffvelrnda 5631 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
11 cvgcmp.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
121, 5, 11serfre 10431 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
1312ffvelrnda 5631 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
14 simpr 109 . . . 4 ((𝜑𝑛𝑍) → 𝑛𝑍)
1514, 1eleqtrdi 2263 . . 3 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
16 simpl 108 . . . 4 ((𝜑𝑛𝑍) → 𝜑)
171eleq2i 2237 . . . . 5 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1817biimpri 132 . . . 4 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
1916, 18, 8syl2an 287 . . 3 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)
2016, 18, 11syl2an 287 . . 3 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
21 cvgcmpub.7 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))
2216, 18, 21syl2an 287 . . 3 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ≤ (𝐹𝑘))
2315, 19, 20, 22ser3le 10474 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ≤ (seq𝑀( + , 𝐹)‘𝑛))
241, 5, 6, 7, 10, 13, 23climle 11297 1 (𝜑𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141   class class class wbr 3989  cfv 5198  cr 7773   + caddc 7777  cle 7955  cz 9212  cuz 9487  seqcseq 10401  cli 11241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator