ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmnsgima GIF version

Theorem ghmnsgima 13800
Description: The image of a normal subgroup under a surjective homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
ghmnsgima.1 𝑌 = (Base‘𝑇)
Assertion
Ref Expression
ghmnsgima ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹𝑈) ∈ (NrmSGrp‘𝑇))

Proof of Theorem ghmnsgima
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1021 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 nsgsubg 13737 . . . 4 (𝑈 ∈ (NrmSGrp‘𝑆) → 𝑈 ∈ (SubGrp‘𝑆))
323ad2ant2 1043 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝑈 ∈ (SubGrp‘𝑆))
4 ghmima 13797 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑆)) → (𝐹𝑈) ∈ (SubGrp‘𝑇))
51, 3, 4syl2anc 411 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹𝑈) ∈ (SubGrp‘𝑇))
61adantr 276 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
7 ghmgrp1 13777 . . . . . . . . 9 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
86, 7syl 14 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑆 ∈ Grp)
9 simprl 529 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑧 ∈ (Base‘𝑆))
10 eqid 2229 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
1110subgss 13706 . . . . . . . . . . 11 (𝑈 ∈ (SubGrp‘𝑆) → 𝑈 ⊆ (Base‘𝑆))
123, 11syl 14 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝑈 ⊆ (Base‘𝑆))
1312adantr 276 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑈 ⊆ (Base‘𝑆))
14 simprr 531 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑥𝑈)
1513, 14sseldd 3225 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑥 ∈ (Base‘𝑆))
16 eqid 2229 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
1710, 16grpcl 13536 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝑧(+g𝑆)𝑥) ∈ (Base‘𝑆))
188, 9, 15, 17syl3anc 1271 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (𝑧(+g𝑆)𝑥) ∈ (Base‘𝑆))
19 eqid 2229 . . . . . . . 8 (-g𝑆) = (-g𝑆)
20 eqid 2229 . . . . . . . 8 (-g𝑇) = (-g𝑇)
2110, 19, 20ghmsub 13783 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑧(+g𝑆)𝑥) ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) → (𝐹‘((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧)) = ((𝐹‘(𝑧(+g𝑆)𝑥))(-g𝑇)(𝐹𝑧)))
226, 18, 9, 21syl3anc 1271 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (𝐹‘((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧)) = ((𝐹‘(𝑧(+g𝑆)𝑥))(-g𝑇)(𝐹𝑧)))
23 eqid 2229 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
2410, 16, 23ghmlin 13780 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐹‘(𝑧(+g𝑆)𝑥)) = ((𝐹𝑧)(+g𝑇)(𝐹𝑥)))
256, 9, 15, 24syl3anc 1271 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (𝐹‘(𝑧(+g𝑆)𝑥)) = ((𝐹𝑧)(+g𝑇)(𝐹𝑥)))
2625oveq1d 6015 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → ((𝐹‘(𝑧(+g𝑆)𝑥))(-g𝑇)(𝐹𝑧)) = (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)))
2722, 26eqtrd 2262 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (𝐹‘((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧)) = (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)))
28 ghmnsgima.1 . . . . . . . . . 10 𝑌 = (Base‘𝑇)
2910, 28ghmf 13779 . . . . . . . . 9 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶𝑌)
301, 29syl 14 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝐹:(Base‘𝑆)⟶𝑌)
3130adantr 276 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝐹:(Base‘𝑆)⟶𝑌)
3231ffnd 5473 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝐹 Fn (Base‘𝑆))
33 simpl2 1025 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑈 ∈ (NrmSGrp‘𝑆))
3410, 16, 19nsgconj 13738 . . . . . . 7 ((𝑈 ∈ (NrmSGrp‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈) → ((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧) ∈ 𝑈)
3533, 9, 14, 34syl3anc 1271 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → ((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧) ∈ 𝑈)
36 fnfvima 5873 . . . . . 6 ((𝐹 Fn (Base‘𝑆) ∧ 𝑈 ⊆ (Base‘𝑆) ∧ ((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧) ∈ 𝑈) → (𝐹‘((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧)) ∈ (𝐹𝑈))
3732, 13, 35, 36syl3anc 1271 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (𝐹‘((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧)) ∈ (𝐹𝑈))
3827, 37eqeltrrd 2307 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈))
3938ralrimivva 2612 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → ∀𝑧 ∈ (Base‘𝑆)∀𝑥𝑈 (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈))
4030ffnd 5473 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝐹 Fn (Base‘𝑆))
41 oveq1 6007 . . . . . . . . 9 (𝑥 = (𝐹𝑧) → (𝑥(+g𝑇)𝑦) = ((𝐹𝑧)(+g𝑇)𝑦))
42 id 19 . . . . . . . . 9 (𝑥 = (𝐹𝑧) → 𝑥 = (𝐹𝑧))
4341, 42oveq12d 6018 . . . . . . . 8 (𝑥 = (𝐹𝑧) → ((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) = (((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)))
4443eleq1d 2298 . . . . . . 7 (𝑥 = (𝐹𝑧) → (((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ (((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
4544ralbidv 2530 . . . . . 6 (𝑥 = (𝐹𝑧) → (∀𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ ∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
4645ralrn 5772 . . . . 5 (𝐹 Fn (Base‘𝑆) → (∀𝑥 ∈ ran 𝐹𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ ∀𝑧 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
4740, 46syl 14 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑥 ∈ ran 𝐹𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ ∀𝑧 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
48 simp3 1023 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → ran 𝐹 = 𝑌)
4948raleqdv 2734 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑥 ∈ ran 𝐹𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ ∀𝑥𝑌𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈)))
50 oveq2 6008 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((𝐹𝑧)(+g𝑇)𝑦) = ((𝐹𝑧)(+g𝑇)(𝐹𝑥)))
5150oveq1d 6015 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) = (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)))
5251eleq1d 2298 . . . . . . 7 (𝑦 = (𝐹𝑥) → ((((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈) ↔ (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
5352ralima 5878 . . . . . 6 ((𝐹 Fn (Base‘𝑆) ∧ 𝑈 ⊆ (Base‘𝑆)) → (∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈) ↔ ∀𝑥𝑈 (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
5440, 12, 53syl2anc 411 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈) ↔ ∀𝑥𝑈 (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
5554ralbidv 2530 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑧 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈) ↔ ∀𝑧 ∈ (Base‘𝑆)∀𝑥𝑈 (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
5647, 49, 553bitr3d 218 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑥𝑌𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ ∀𝑧 ∈ (Base‘𝑆)∀𝑥𝑈 (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
5739, 56mpbird 167 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → ∀𝑥𝑌𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈))
5828, 23, 20isnsg3 13739 . 2 ((𝐹𝑈) ∈ (NrmSGrp‘𝑇) ↔ ((𝐹𝑈) ∈ (SubGrp‘𝑇) ∧ ∀𝑥𝑌𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈)))
595, 57, 58sylanbrc 417 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹𝑈) ∈ (NrmSGrp‘𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wss 3197  ran crn 4719  cima 4721   Fn wfn 5312  wf 5313  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  Grpcgrp 13528  -gcsg 13530  SubGrpcsubg 13699  NrmSGrpcnsg 13700   GrpHom cghm 13772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-sbg 13533  df-subg 13702  df-nsg 13703  df-ghm 13773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator