| Step | Hyp | Ref
 | Expression | 
| 1 |   | simp1 999 | 
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | 
| 2 |   | nsgsubg 13335 | 
. . . 4
⊢ (𝑈 ∈ (NrmSGrp‘𝑆) → 𝑈 ∈ (SubGrp‘𝑆)) | 
| 3 | 2 | 3ad2ant2 1021 | 
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝑈 ∈ (SubGrp‘𝑆)) | 
| 4 |   | ghmima 13395 | 
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑆)) → (𝐹 “ 𝑈) ∈ (SubGrp‘𝑇)) | 
| 5 | 1, 3, 4 | syl2anc 411 | 
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹 “ 𝑈) ∈ (SubGrp‘𝑇)) | 
| 6 | 1 | adantr 276 | 
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | 
| 7 |   | ghmgrp1 13375 | 
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | 
| 8 | 6, 7 | syl 14 | 
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → 𝑆 ∈ Grp) | 
| 9 |   | simprl 529 | 
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → 𝑧 ∈ (Base‘𝑆)) | 
| 10 |   | eqid 2196 | 
. . . . . . . . . . . 12
⊢
(Base‘𝑆) =
(Base‘𝑆) | 
| 11 | 10 | subgss 13304 | 
. . . . . . . . . . 11
⊢ (𝑈 ∈ (SubGrp‘𝑆) → 𝑈 ⊆ (Base‘𝑆)) | 
| 12 | 3, 11 | syl 14 | 
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝑈 ⊆ (Base‘𝑆)) | 
| 13 | 12 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → 𝑈 ⊆ (Base‘𝑆)) | 
| 14 |   | simprr 531 | 
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → 𝑥 ∈ 𝑈) | 
| 15 | 13, 14 | sseldd 3184 | 
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → 𝑥 ∈ (Base‘𝑆)) | 
| 16 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(+g‘𝑆) = (+g‘𝑆) | 
| 17 | 10, 16 | grpcl 13140 | 
. . . . . . . 8
⊢ ((𝑆 ∈ Grp ∧ 𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝑧(+g‘𝑆)𝑥) ∈ (Base‘𝑆)) | 
| 18 | 8, 9, 15, 17 | syl3anc 1249 | 
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → (𝑧(+g‘𝑆)𝑥) ∈ (Base‘𝑆)) | 
| 19 |   | eqid 2196 | 
. . . . . . . 8
⊢
(-g‘𝑆) = (-g‘𝑆) | 
| 20 |   | eqid 2196 | 
. . . . . . . 8
⊢
(-g‘𝑇) = (-g‘𝑇) | 
| 21 | 10, 19, 20 | ghmsub 13381 | 
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑧(+g‘𝑆)𝑥) ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) → (𝐹‘((𝑧(+g‘𝑆)𝑥)(-g‘𝑆)𝑧)) = ((𝐹‘(𝑧(+g‘𝑆)𝑥))(-g‘𝑇)(𝐹‘𝑧))) | 
| 22 | 6, 18, 9, 21 | syl3anc 1249 | 
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → (𝐹‘((𝑧(+g‘𝑆)𝑥)(-g‘𝑆)𝑧)) = ((𝐹‘(𝑧(+g‘𝑆)𝑥))(-g‘𝑇)(𝐹‘𝑧))) | 
| 23 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(+g‘𝑇) = (+g‘𝑇) | 
| 24 | 10, 16, 23 | ghmlin 13378 | 
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐹‘(𝑧(+g‘𝑆)𝑥)) = ((𝐹‘𝑧)(+g‘𝑇)(𝐹‘𝑥))) | 
| 25 | 6, 9, 15, 24 | syl3anc 1249 | 
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → (𝐹‘(𝑧(+g‘𝑆)𝑥)) = ((𝐹‘𝑧)(+g‘𝑇)(𝐹‘𝑥))) | 
| 26 | 25 | oveq1d 5937 | 
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → ((𝐹‘(𝑧(+g‘𝑆)𝑥))(-g‘𝑇)(𝐹‘𝑧)) = (((𝐹‘𝑧)(+g‘𝑇)(𝐹‘𝑥))(-g‘𝑇)(𝐹‘𝑧))) | 
| 27 | 22, 26 | eqtrd 2229 | 
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → (𝐹‘((𝑧(+g‘𝑆)𝑥)(-g‘𝑆)𝑧)) = (((𝐹‘𝑧)(+g‘𝑇)(𝐹‘𝑥))(-g‘𝑇)(𝐹‘𝑧))) | 
| 28 |   | ghmnsgima.1 | 
. . . . . . . . . 10
⊢ 𝑌 = (Base‘𝑇) | 
| 29 | 10, 28 | ghmf 13377 | 
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶𝑌) | 
| 30 | 1, 29 | syl 14 | 
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝐹:(Base‘𝑆)⟶𝑌) | 
| 31 | 30 | adantr 276 | 
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → 𝐹:(Base‘𝑆)⟶𝑌) | 
| 32 | 31 | ffnd 5408 | 
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → 𝐹 Fn (Base‘𝑆)) | 
| 33 |   | simpl2 1003 | 
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → 𝑈 ∈ (NrmSGrp‘𝑆)) | 
| 34 | 10, 16, 19 | nsgconj 13336 | 
. . . . . . 7
⊢ ((𝑈 ∈ (NrmSGrp‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈) → ((𝑧(+g‘𝑆)𝑥)(-g‘𝑆)𝑧) ∈ 𝑈) | 
| 35 | 33, 9, 14, 34 | syl3anc 1249 | 
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → ((𝑧(+g‘𝑆)𝑥)(-g‘𝑆)𝑧) ∈ 𝑈) | 
| 36 |   | fnfvima 5797 | 
. . . . . 6
⊢ ((𝐹 Fn (Base‘𝑆) ∧ 𝑈 ⊆ (Base‘𝑆) ∧ ((𝑧(+g‘𝑆)𝑥)(-g‘𝑆)𝑧) ∈ 𝑈) → (𝐹‘((𝑧(+g‘𝑆)𝑥)(-g‘𝑆)𝑧)) ∈ (𝐹 “ 𝑈)) | 
| 37 | 32, 13, 35, 36 | syl3anc 1249 | 
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → (𝐹‘((𝑧(+g‘𝑆)𝑥)(-g‘𝑆)𝑧)) ∈ (𝐹 “ 𝑈)) | 
| 38 | 27, 37 | eqeltrrd 2274 | 
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ 𝑈)) → (((𝐹‘𝑧)(+g‘𝑇)(𝐹‘𝑥))(-g‘𝑇)(𝐹‘𝑧)) ∈ (𝐹 “ 𝑈)) | 
| 39 | 38 | ralrimivva 2579 | 
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → ∀𝑧 ∈ (Base‘𝑆)∀𝑥 ∈ 𝑈 (((𝐹‘𝑧)(+g‘𝑇)(𝐹‘𝑥))(-g‘𝑇)(𝐹‘𝑧)) ∈ (𝐹 “ 𝑈)) | 
| 40 | 30 | ffnd 5408 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝐹 Fn (Base‘𝑆)) | 
| 41 |   | oveq1 5929 | 
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘𝑧) → (𝑥(+g‘𝑇)𝑦) = ((𝐹‘𝑧)(+g‘𝑇)𝑦)) | 
| 42 |   | id 19 | 
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘𝑧) → 𝑥 = (𝐹‘𝑧)) | 
| 43 | 41, 42 | oveq12d 5940 | 
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑧) → ((𝑥(+g‘𝑇)𝑦)(-g‘𝑇)𝑥) = (((𝐹‘𝑧)(+g‘𝑇)𝑦)(-g‘𝑇)(𝐹‘𝑧))) | 
| 44 | 43 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑧) → (((𝑥(+g‘𝑇)𝑦)(-g‘𝑇)𝑥) ∈ (𝐹 “ 𝑈) ↔ (((𝐹‘𝑧)(+g‘𝑇)𝑦)(-g‘𝑇)(𝐹‘𝑧)) ∈ (𝐹 “ 𝑈))) | 
| 45 | 44 | ralbidv 2497 | 
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑧) → (∀𝑦 ∈ (𝐹 “ 𝑈)((𝑥(+g‘𝑇)𝑦)(-g‘𝑇)𝑥) ∈ (𝐹 “ 𝑈) ↔ ∀𝑦 ∈ (𝐹 “ 𝑈)(((𝐹‘𝑧)(+g‘𝑇)𝑦)(-g‘𝑇)(𝐹‘𝑧)) ∈ (𝐹 “ 𝑈))) | 
| 46 | 45 | ralrn 5700 | 
. . . . 5
⊢ (𝐹 Fn (Base‘𝑆) → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ (𝐹 “ 𝑈)((𝑥(+g‘𝑇)𝑦)(-g‘𝑇)𝑥) ∈ (𝐹 “ 𝑈) ↔ ∀𝑧 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹 “ 𝑈)(((𝐹‘𝑧)(+g‘𝑇)𝑦)(-g‘𝑇)(𝐹‘𝑧)) ∈ (𝐹 “ 𝑈))) | 
| 47 | 40, 46 | syl 14 | 
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ (𝐹 “ 𝑈)((𝑥(+g‘𝑇)𝑦)(-g‘𝑇)𝑥) ∈ (𝐹 “ 𝑈) ↔ ∀𝑧 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹 “ 𝑈)(((𝐹‘𝑧)(+g‘𝑇)𝑦)(-g‘𝑇)(𝐹‘𝑧)) ∈ (𝐹 “ 𝑈))) | 
| 48 |   | simp3 1001 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → ran 𝐹 = 𝑌) | 
| 49 | 48 | raleqdv 2699 | 
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ (𝐹 “ 𝑈)((𝑥(+g‘𝑇)𝑦)(-g‘𝑇)𝑥) ∈ (𝐹 “ 𝑈) ↔ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ (𝐹 “ 𝑈)((𝑥(+g‘𝑇)𝑦)(-g‘𝑇)𝑥) ∈ (𝐹 “ 𝑈))) | 
| 50 |   | oveq2 5930 | 
. . . . . . . . 9
⊢ (𝑦 = (𝐹‘𝑥) → ((𝐹‘𝑧)(+g‘𝑇)𝑦) = ((𝐹‘𝑧)(+g‘𝑇)(𝐹‘𝑥))) | 
| 51 | 50 | oveq1d 5937 | 
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝑥) → (((𝐹‘𝑧)(+g‘𝑇)𝑦)(-g‘𝑇)(𝐹‘𝑧)) = (((𝐹‘𝑧)(+g‘𝑇)(𝐹‘𝑥))(-g‘𝑇)(𝐹‘𝑧))) | 
| 52 | 51 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝑥) → ((((𝐹‘𝑧)(+g‘𝑇)𝑦)(-g‘𝑇)(𝐹‘𝑧)) ∈ (𝐹 “ 𝑈) ↔ (((𝐹‘𝑧)(+g‘𝑇)(𝐹‘𝑥))(-g‘𝑇)(𝐹‘𝑧)) ∈ (𝐹 “ 𝑈))) | 
| 53 | 52 | ralima 5802 | 
. . . . . 6
⊢ ((𝐹 Fn (Base‘𝑆) ∧ 𝑈 ⊆ (Base‘𝑆)) → (∀𝑦 ∈ (𝐹 “ 𝑈)(((𝐹‘𝑧)(+g‘𝑇)𝑦)(-g‘𝑇)(𝐹‘𝑧)) ∈ (𝐹 “ 𝑈) ↔ ∀𝑥 ∈ 𝑈 (((𝐹‘𝑧)(+g‘𝑇)(𝐹‘𝑥))(-g‘𝑇)(𝐹‘𝑧)) ∈ (𝐹 “ 𝑈))) | 
| 54 | 40, 12, 53 | syl2anc 411 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑦 ∈ (𝐹 “ 𝑈)(((𝐹‘𝑧)(+g‘𝑇)𝑦)(-g‘𝑇)(𝐹‘𝑧)) ∈ (𝐹 “ 𝑈) ↔ ∀𝑥 ∈ 𝑈 (((𝐹‘𝑧)(+g‘𝑇)(𝐹‘𝑥))(-g‘𝑇)(𝐹‘𝑧)) ∈ (𝐹 “ 𝑈))) | 
| 55 | 54 | ralbidv 2497 | 
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑧 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹 “ 𝑈)(((𝐹‘𝑧)(+g‘𝑇)𝑦)(-g‘𝑇)(𝐹‘𝑧)) ∈ (𝐹 “ 𝑈) ↔ ∀𝑧 ∈ (Base‘𝑆)∀𝑥 ∈ 𝑈 (((𝐹‘𝑧)(+g‘𝑇)(𝐹‘𝑥))(-g‘𝑇)(𝐹‘𝑧)) ∈ (𝐹 “ 𝑈))) | 
| 56 | 47, 49, 55 | 3bitr3d 218 | 
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑥 ∈ 𝑌 ∀𝑦 ∈ (𝐹 “ 𝑈)((𝑥(+g‘𝑇)𝑦)(-g‘𝑇)𝑥) ∈ (𝐹 “ 𝑈) ↔ ∀𝑧 ∈ (Base‘𝑆)∀𝑥 ∈ 𝑈 (((𝐹‘𝑧)(+g‘𝑇)(𝐹‘𝑥))(-g‘𝑇)(𝐹‘𝑧)) ∈ (𝐹 “ 𝑈))) | 
| 57 | 39, 56 | mpbird 167 | 
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ (𝐹 “ 𝑈)((𝑥(+g‘𝑇)𝑦)(-g‘𝑇)𝑥) ∈ (𝐹 “ 𝑈)) | 
| 58 | 28, 23, 20 | isnsg3 13337 | 
. 2
⊢ ((𝐹 “ 𝑈) ∈ (NrmSGrp‘𝑇) ↔ ((𝐹 “ 𝑈) ∈ (SubGrp‘𝑇) ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ (𝐹 “ 𝑈)((𝑥(+g‘𝑇)𝑦)(-g‘𝑇)𝑥) ∈ (𝐹 “ 𝑈))) | 
| 59 | 5, 57, 58 | sylanbrc 417 | 
1
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹 “ 𝑈) ∈ (NrmSGrp‘𝑇)) |