ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzmhm2 Unicode version

Theorem gsumfzmhm2 13724
Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.)
Hypotheses
Ref Expression
gsummhm2.b  |-  B  =  ( Base `  G
)
gsummhm2.z  |-  .0.  =  ( 0g `  G )
gsummhm2.g  |-  ( ph  ->  G  e. CMnd )
gsummhm2.h  |-  ( ph  ->  H  e.  Mnd )
gsumfzmhm2.m  |-  ( ph  ->  M  e.  ZZ )
gsumfzmhm2.n  |-  ( ph  ->  N  e.  ZZ )
gsummhm2.k  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  ( G MndHom  H ) )
gsumfzmhm2.f  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  X  e.  B )
gsummhm2.1  |-  ( x  =  X  ->  C  =  D )
gsumfzmhm2.2  |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  C  =  E )
Assertion
Ref Expression
gsumfzmhm2  |-  ( ph  ->  ( H  gsumg  ( k  e.  ( M ... N ) 
|->  D ) )  =  E )
Distinct variable groups:    x, k, N   
k, M, x    B, k, x    C, k    x, D    x, E    ph, k    x, G    x, H    x, X
Allowed substitution hints:    ph( x)    C( x)    D( k)    E( k)    G( k)    H( k)    X( k)    .0. ( x, k)

Proof of Theorem gsumfzmhm2
StepHypRef Expression
1 gsummhm2.b . . 3  |-  B  =  ( Base `  G
)
2 gsummhm2.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsummhm2.g . . 3  |-  ( ph  ->  G  e. CMnd )
4 gsummhm2.h . . 3  |-  ( ph  ->  H  e.  Mnd )
5 gsumfzmhm2.m . . 3  |-  ( ph  ->  M  e.  ZZ )
6 gsumfzmhm2.n . . 3  |-  ( ph  ->  N  e.  ZZ )
7 gsummhm2.k . . 3  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  ( G MndHom  H ) )
8 gsumfzmhm2.f . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  X  e.  B )
98fmpttd 5742 . . 3  |-  ( ph  ->  ( k  e.  ( M ... N ) 
|->  X ) : ( M ... N ) --> B )
101, 2, 3, 4, 5, 6, 7, 9gsumfzmhm 13723 . 2  |-  ( ph  ->  ( H  gsumg  ( ( x  e.  B  |->  C )  o.  ( k  e.  ( M ... N ) 
|->  X ) ) )  =  ( ( x  e.  B  |->  C ) `
 ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) ) ) )
11 eqidd 2207 . . . 4  |-  ( ph  ->  ( k  e.  ( M ... N ) 
|->  X )  =  ( k  e.  ( M ... N )  |->  X ) )
12 eqidd 2207 . . . 4  |-  ( ph  ->  ( x  e.  B  |->  C )  =  ( x  e.  B  |->  C ) )
13 gsummhm2.1 . . . 4  |-  ( x  =  X  ->  C  =  D )
148, 11, 12, 13fmptco 5753 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  C )  o.  ( k  e.  ( M ... N ) 
|->  X ) )  =  ( k  e.  ( M ... N ) 
|->  D ) )
1514oveq2d 5967 . 2  |-  ( ph  ->  ( H  gsumg  ( ( x  e.  B  |->  C )  o.  ( k  e.  ( M ... N ) 
|->  X ) ) )  =  ( H  gsumg  ( k  e.  ( M ... N )  |->  D ) ) )
16 eqid 2206 . . 3  |-  ( x  e.  B  |->  C )  =  ( x  e.  B  |->  C )
17 gsumfzmhm2.2 . . 3  |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  C  =  E )
183cmnmndd 13688 . . . 4  |-  ( ph  ->  G  e.  Mnd )
191, 2, 18, 5, 6, 9gsumfzcl 13375 . . 3  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( M ... N ) 
|->  X ) )  e.  B )
2017eleq1d 2275 . . . 4  |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  ( C  e.  ( Base `  H
)  <->  E  e.  ( Base `  H ) ) )
21 eqid 2206 . . . . . . 7  |-  ( Base `  H )  =  (
Base `  H )
221, 21mhmf 13341 . . . . . 6  |-  ( ( x  e.  B  |->  C )  e.  ( G MndHom  H )  ->  (
x  e.  B  |->  C ) : B --> ( Base `  H ) )
237, 22syl 14 . . . . 5  |-  ( ph  ->  ( x  e.  B  |->  C ) : B --> ( Base `  H )
)
2416fmpt 5737 . . . . 5  |-  ( A. x  e.  B  C  e.  ( Base `  H
)  <->  ( x  e.  B  |->  C ) : B --> ( Base `  H
) )
2523, 24sylibr 134 . . . 4  |-  ( ph  ->  A. x  e.  B  C  e.  ( Base `  H ) )
2620, 25, 19rspcdva 2883 . . 3  |-  ( ph  ->  E  e.  ( Base `  H ) )
2716, 17, 19, 26fvmptd3 5680 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C ) `  ( G  gsumg  ( k  e.  ( M ... N ) 
|->  X ) ) )  =  E )
2810, 15, 273eqtr3d 2247 1  |-  ( ph  ->  ( H  gsumg  ( k  e.  ( M ... N ) 
|->  D ) )  =  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   A.wral 2485    |-> cmpt 4109    o. ccom 4683   -->wf 5272   ` cfv 5276  (class class class)co 5951   ZZcz 9379   ...cfz 10137   Basecbs 12876   0gc0g 13132    gsumg cgsu 13133   Mndcmnd 13292   MndHom cmhm 13333  CMndccmn 13664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-1o 6509  df-er 6627  df-map 6744  df-en 6835  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-2 9102  df-n0 9303  df-z 9380  df-uz 9656  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-0g 13134  df-igsum 13135  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-mhm 13335  df-cmn 13666
This theorem is referenced by:  lgseisenlem4  15594
  Copyright terms: Public domain W3C validator