ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzmhm2 Unicode version

Theorem gsumfzmhm2 13847
Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.)
Hypotheses
Ref Expression
gsummhm2.b  |-  B  =  ( Base `  G
)
gsummhm2.z  |-  .0.  =  ( 0g `  G )
gsummhm2.g  |-  ( ph  ->  G  e. CMnd )
gsummhm2.h  |-  ( ph  ->  H  e.  Mnd )
gsumfzmhm2.m  |-  ( ph  ->  M  e.  ZZ )
gsumfzmhm2.n  |-  ( ph  ->  N  e.  ZZ )
gsummhm2.k  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  ( G MndHom  H ) )
gsumfzmhm2.f  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  X  e.  B )
gsummhm2.1  |-  ( x  =  X  ->  C  =  D )
gsumfzmhm2.2  |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  C  =  E )
Assertion
Ref Expression
gsumfzmhm2  |-  ( ph  ->  ( H  gsumg  ( k  e.  ( M ... N ) 
|->  D ) )  =  E )
Distinct variable groups:    x, k, N   
k, M, x    B, k, x    C, k    x, D    x, E    ph, k    x, G    x, H    x, X
Allowed substitution hints:    ph( x)    C( x)    D( k)    E( k)    G( k)    H( k)    X( k)    .0. ( x, k)

Proof of Theorem gsumfzmhm2
StepHypRef Expression
1 gsummhm2.b . . 3  |-  B  =  ( Base `  G
)
2 gsummhm2.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsummhm2.g . . 3  |-  ( ph  ->  G  e. CMnd )
4 gsummhm2.h . . 3  |-  ( ph  ->  H  e.  Mnd )
5 gsumfzmhm2.m . . 3  |-  ( ph  ->  M  e.  ZZ )
6 gsumfzmhm2.n . . 3  |-  ( ph  ->  N  e.  ZZ )
7 gsummhm2.k . . 3  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  ( G MndHom  H ) )
8 gsumfzmhm2.f . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  X  e.  B )
98fmpttd 5763 . . 3  |-  ( ph  ->  ( k  e.  ( M ... N ) 
|->  X ) : ( M ... N ) --> B )
101, 2, 3, 4, 5, 6, 7, 9gsumfzmhm 13846 . 2  |-  ( ph  ->  ( H  gsumg  ( ( x  e.  B  |->  C )  o.  ( k  e.  ( M ... N ) 
|->  X ) ) )  =  ( ( x  e.  B  |->  C ) `
 ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) ) ) )
11 eqidd 2210 . . . 4  |-  ( ph  ->  ( k  e.  ( M ... N ) 
|->  X )  =  ( k  e.  ( M ... N )  |->  X ) )
12 eqidd 2210 . . . 4  |-  ( ph  ->  ( x  e.  B  |->  C )  =  ( x  e.  B  |->  C ) )
13 gsummhm2.1 . . . 4  |-  ( x  =  X  ->  C  =  D )
148, 11, 12, 13fmptco 5774 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  C )  o.  ( k  e.  ( M ... N ) 
|->  X ) )  =  ( k  e.  ( M ... N ) 
|->  D ) )
1514oveq2d 5990 . 2  |-  ( ph  ->  ( H  gsumg  ( ( x  e.  B  |->  C )  o.  ( k  e.  ( M ... N ) 
|->  X ) ) )  =  ( H  gsumg  ( k  e.  ( M ... N )  |->  D ) ) )
16 eqid 2209 . . 3  |-  ( x  e.  B  |->  C )  =  ( x  e.  B  |->  C )
17 gsumfzmhm2.2 . . 3  |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  C  =  E )
183cmnmndd 13811 . . . 4  |-  ( ph  ->  G  e.  Mnd )
191, 2, 18, 5, 6, 9gsumfzcl 13498 . . 3  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( M ... N ) 
|->  X ) )  e.  B )
2017eleq1d 2278 . . . 4  |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  ( C  e.  ( Base `  H
)  <->  E  e.  ( Base `  H ) ) )
21 eqid 2209 . . . . . . 7  |-  ( Base `  H )  =  (
Base `  H )
221, 21mhmf 13464 . . . . . 6  |-  ( ( x  e.  B  |->  C )  e.  ( G MndHom  H )  ->  (
x  e.  B  |->  C ) : B --> ( Base `  H ) )
237, 22syl 14 . . . . 5  |-  ( ph  ->  ( x  e.  B  |->  C ) : B --> ( Base `  H )
)
2416fmpt 5758 . . . . 5  |-  ( A. x  e.  B  C  e.  ( Base `  H
)  <->  ( x  e.  B  |->  C ) : B --> ( Base `  H
) )
2523, 24sylibr 134 . . . 4  |-  ( ph  ->  A. x  e.  B  C  e.  ( Base `  H ) )
2620, 25, 19rspcdva 2892 . . 3  |-  ( ph  ->  E  e.  ( Base `  H ) )
2716, 17, 19, 26fvmptd3 5701 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C ) `  ( G  gsumg  ( k  e.  ( M ... N ) 
|->  X ) ) )  =  E )
2810, 15, 273eqtr3d 2250 1  |-  ( ph  ->  ( H  gsumg  ( k  e.  ( M ... N ) 
|->  D ) )  =  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1375    e. wcel 2180   A.wral 2488    |-> cmpt 4124    o. ccom 4700   -->wf 5290   ` cfv 5294  (class class class)co 5974   ZZcz 9414   ...cfz 10172   Basecbs 12998   0gc0g 13255    gsumg cgsu 13256   Mndcmnd 13415   MndHom cmhm 13456  CMndccmn 13787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-1o 6532  df-er 6650  df-map 6767  df-en 6858  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-0g 13257  df-igsum 13258  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-mhm 13458  df-cmn 13789
This theorem is referenced by:  lgseisenlem4  15717
  Copyright terms: Public domain W3C validator