ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzmhm2 Unicode version

Theorem gsumfzmhm2 13414
Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.)
Hypotheses
Ref Expression
gsummhm2.b  |-  B  =  ( Base `  G
)
gsummhm2.z  |-  .0.  =  ( 0g `  G )
gsummhm2.g  |-  ( ph  ->  G  e. CMnd )
gsummhm2.h  |-  ( ph  ->  H  e.  Mnd )
gsumfzmhm2.m  |-  ( ph  ->  M  e.  ZZ )
gsumfzmhm2.n  |-  ( ph  ->  N  e.  ZZ )
gsummhm2.k  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  ( G MndHom  H ) )
gsumfzmhm2.f  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  X  e.  B )
gsummhm2.1  |-  ( x  =  X  ->  C  =  D )
gsumfzmhm2.2  |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  C  =  E )
Assertion
Ref Expression
gsumfzmhm2  |-  ( ph  ->  ( H  gsumg  ( k  e.  ( M ... N ) 
|->  D ) )  =  E )
Distinct variable groups:    x, k, N   
k, M, x    B, k, x    C, k    x, D    x, E    ph, k    x, G    x, H    x, X
Allowed substitution hints:    ph( x)    C( x)    D( k)    E( k)    G( k)    H( k)    X( k)    .0. ( x, k)

Proof of Theorem gsumfzmhm2
StepHypRef Expression
1 gsummhm2.b . . 3  |-  B  =  ( Base `  G
)
2 gsummhm2.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsummhm2.g . . 3  |-  ( ph  ->  G  e. CMnd )
4 gsummhm2.h . . 3  |-  ( ph  ->  H  e.  Mnd )
5 gsumfzmhm2.m . . 3  |-  ( ph  ->  M  e.  ZZ )
6 gsumfzmhm2.n . . 3  |-  ( ph  ->  N  e.  ZZ )
7 gsummhm2.k . . 3  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  ( G MndHom  H ) )
8 gsumfzmhm2.f . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  X  e.  B )
98fmpttd 5713 . . 3  |-  ( ph  ->  ( k  e.  ( M ... N ) 
|->  X ) : ( M ... N ) --> B )
101, 2, 3, 4, 5, 6, 7, 9gsumfzmhm 13413 . 2  |-  ( ph  ->  ( H  gsumg  ( ( x  e.  B  |->  C )  o.  ( k  e.  ( M ... N ) 
|->  X ) ) )  =  ( ( x  e.  B  |->  C ) `
 ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) ) ) )
11 eqidd 2194 . . . 4  |-  ( ph  ->  ( k  e.  ( M ... N ) 
|->  X )  =  ( k  e.  ( M ... N )  |->  X ) )
12 eqidd 2194 . . . 4  |-  ( ph  ->  ( x  e.  B  |->  C )  =  ( x  e.  B  |->  C ) )
13 gsummhm2.1 . . . 4  |-  ( x  =  X  ->  C  =  D )
148, 11, 12, 13fmptco 5724 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  C )  o.  ( k  e.  ( M ... N ) 
|->  X ) )  =  ( k  e.  ( M ... N ) 
|->  D ) )
1514oveq2d 5934 . 2  |-  ( ph  ->  ( H  gsumg  ( ( x  e.  B  |->  C )  o.  ( k  e.  ( M ... N ) 
|->  X ) ) )  =  ( H  gsumg  ( k  e.  ( M ... N )  |->  D ) ) )
16 eqid 2193 . . 3  |-  ( x  e.  B  |->  C )  =  ( x  e.  B  |->  C )
17 gsumfzmhm2.2 . . 3  |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  C  =  E )
183cmnmndd 13378 . . . 4  |-  ( ph  ->  G  e.  Mnd )
191, 2, 18, 5, 6, 9gsumfzcl 13071 . . 3  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( M ... N ) 
|->  X ) )  e.  B )
2017eleq1d 2262 . . . 4  |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  ( C  e.  ( Base `  H
)  <->  E  e.  ( Base `  H ) ) )
21 eqid 2193 . . . . . . 7  |-  ( Base `  H )  =  (
Base `  H )
221, 21mhmf 13037 . . . . . 6  |-  ( ( x  e.  B  |->  C )  e.  ( G MndHom  H )  ->  (
x  e.  B  |->  C ) : B --> ( Base `  H ) )
237, 22syl 14 . . . . 5  |-  ( ph  ->  ( x  e.  B  |->  C ) : B --> ( Base `  H )
)
2416fmpt 5708 . . . . 5  |-  ( A. x  e.  B  C  e.  ( Base `  H
)  <->  ( x  e.  B  |->  C ) : B --> ( Base `  H
) )
2523, 24sylibr 134 . . . 4  |-  ( ph  ->  A. x  e.  B  C  e.  ( Base `  H ) )
2620, 25, 19rspcdva 2869 . . 3  |-  ( ph  ->  E  e.  ( Base `  H ) )
2716, 17, 19, 26fvmptd3 5651 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C ) `  ( G  gsumg  ( k  e.  ( M ... N ) 
|->  X ) ) )  =  E )
2810, 15, 273eqtr3d 2234 1  |-  ( ph  ->  ( H  gsumg  ( k  e.  ( M ... N ) 
|->  D ) )  =  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472    |-> cmpt 4090    o. ccom 4663   -->wf 5250   ` cfv 5254  (class class class)co 5918   ZZcz 9317   ...cfz 10074   Basecbs 12618   0gc0g 12867    gsumg cgsu 12868   Mndcmnd 12997   MndHom cmhm 13029  CMndccmn 13354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-map 6704  df-en 6795  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-igsum 12870  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-cmn 13356
This theorem is referenced by:  lgseisenlem4  15189
  Copyright terms: Public domain W3C validator