ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzmhm2 Unicode version

Theorem gsumfzmhm2 13550
Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.)
Hypotheses
Ref Expression
gsummhm2.b  |-  B  =  ( Base `  G
)
gsummhm2.z  |-  .0.  =  ( 0g `  G )
gsummhm2.g  |-  ( ph  ->  G  e. CMnd )
gsummhm2.h  |-  ( ph  ->  H  e.  Mnd )
gsumfzmhm2.m  |-  ( ph  ->  M  e.  ZZ )
gsumfzmhm2.n  |-  ( ph  ->  N  e.  ZZ )
gsummhm2.k  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  ( G MndHom  H ) )
gsumfzmhm2.f  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  X  e.  B )
gsummhm2.1  |-  ( x  =  X  ->  C  =  D )
gsumfzmhm2.2  |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  C  =  E )
Assertion
Ref Expression
gsumfzmhm2  |-  ( ph  ->  ( H  gsumg  ( k  e.  ( M ... N ) 
|->  D ) )  =  E )
Distinct variable groups:    x, k, N   
k, M, x    B, k, x    C, k    x, D    x, E    ph, k    x, G    x, H    x, X
Allowed substitution hints:    ph( x)    C( x)    D( k)    E( k)    G( k)    H( k)    X( k)    .0. ( x, k)

Proof of Theorem gsumfzmhm2
StepHypRef Expression
1 gsummhm2.b . . 3  |-  B  =  ( Base `  G
)
2 gsummhm2.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsummhm2.g . . 3  |-  ( ph  ->  G  e. CMnd )
4 gsummhm2.h . . 3  |-  ( ph  ->  H  e.  Mnd )
5 gsumfzmhm2.m . . 3  |-  ( ph  ->  M  e.  ZZ )
6 gsumfzmhm2.n . . 3  |-  ( ph  ->  N  e.  ZZ )
7 gsummhm2.k . . 3  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  ( G MndHom  H ) )
8 gsumfzmhm2.f . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  X  e.  B )
98fmpttd 5720 . . 3  |-  ( ph  ->  ( k  e.  ( M ... N ) 
|->  X ) : ( M ... N ) --> B )
101, 2, 3, 4, 5, 6, 7, 9gsumfzmhm 13549 . 2  |-  ( ph  ->  ( H  gsumg  ( ( x  e.  B  |->  C )  o.  ( k  e.  ( M ... N ) 
|->  X ) ) )  =  ( ( x  e.  B  |->  C ) `
 ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) ) ) )
11 eqidd 2197 . . . 4  |-  ( ph  ->  ( k  e.  ( M ... N ) 
|->  X )  =  ( k  e.  ( M ... N )  |->  X ) )
12 eqidd 2197 . . . 4  |-  ( ph  ->  ( x  e.  B  |->  C )  =  ( x  e.  B  |->  C ) )
13 gsummhm2.1 . . . 4  |-  ( x  =  X  ->  C  =  D )
148, 11, 12, 13fmptco 5731 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  C )  o.  ( k  e.  ( M ... N ) 
|->  X ) )  =  ( k  e.  ( M ... N ) 
|->  D ) )
1514oveq2d 5941 . 2  |-  ( ph  ->  ( H  gsumg  ( ( x  e.  B  |->  C )  o.  ( k  e.  ( M ... N ) 
|->  X ) ) )  =  ( H  gsumg  ( k  e.  ( M ... N )  |->  D ) ) )
16 eqid 2196 . . 3  |-  ( x  e.  B  |->  C )  =  ( x  e.  B  |->  C )
17 gsumfzmhm2.2 . . 3  |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  C  =  E )
183cmnmndd 13514 . . . 4  |-  ( ph  ->  G  e.  Mnd )
191, 2, 18, 5, 6, 9gsumfzcl 13201 . . 3  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( M ... N ) 
|->  X ) )  e.  B )
2017eleq1d 2265 . . . 4  |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  ( C  e.  ( Base `  H
)  <->  E  e.  ( Base `  H ) ) )
21 eqid 2196 . . . . . . 7  |-  ( Base `  H )  =  (
Base `  H )
221, 21mhmf 13167 . . . . . 6  |-  ( ( x  e.  B  |->  C )  e.  ( G MndHom  H )  ->  (
x  e.  B  |->  C ) : B --> ( Base `  H ) )
237, 22syl 14 . . . . 5  |-  ( ph  ->  ( x  e.  B  |->  C ) : B --> ( Base `  H )
)
2416fmpt 5715 . . . . 5  |-  ( A. x  e.  B  C  e.  ( Base `  H
)  <->  ( x  e.  B  |->  C ) : B --> ( Base `  H
) )
2523, 24sylibr 134 . . . 4  |-  ( ph  ->  A. x  e.  B  C  e.  ( Base `  H ) )
2620, 25, 19rspcdva 2873 . . 3  |-  ( ph  ->  E  e.  ( Base `  H ) )
2716, 17, 19, 26fvmptd3 5658 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C ) `  ( G  gsumg  ( k  e.  ( M ... N ) 
|->  X ) ) )  =  E )
2810, 15, 273eqtr3d 2237 1  |-  ( ph  ->  ( H  gsumg  ( k  e.  ( M ... N ) 
|->  D ) )  =  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475    |-> cmpt 4095    o. ccom 4668   -->wf 5255   ` cfv 5259  (class class class)co 5925   ZZcz 9343   ...cfz 10100   Basecbs 12703   0gc0g 12958    gsumg cgsu 12959   Mndcmnd 13118   MndHom cmhm 13159  CMndccmn 13490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-map 6718  df-en 6809  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-igsum 12961  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-cmn 13492
This theorem is referenced by:  lgseisenlem4  15398
  Copyright terms: Public domain W3C validator