ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzmhm2 GIF version

Theorem gsumfzmhm2 13550
Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.)
Hypotheses
Ref Expression
gsummhm2.b 𝐵 = (Base‘𝐺)
gsummhm2.z 0 = (0g𝐺)
gsummhm2.g (𝜑𝐺 ∈ CMnd)
gsummhm2.h (𝜑𝐻 ∈ Mnd)
gsumfzmhm2.m (𝜑𝑀 ∈ ℤ)
gsumfzmhm2.n (𝜑𝑁 ∈ ℤ)
gsummhm2.k (𝜑 → (𝑥𝐵𝐶) ∈ (𝐺 MndHom 𝐻))
gsumfzmhm2.f ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑋𝐵)
gsummhm2.1 (𝑥 = 𝑋𝐶 = 𝐷)
gsumfzmhm2.2 (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → 𝐶 = 𝐸)
Assertion
Ref Expression
gsumfzmhm2 (𝜑 → (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) = 𝐸)
Distinct variable groups:   𝑥,𝑘,𝑁   𝑘,𝑀,𝑥   𝐵,𝑘,𝑥   𝐶,𝑘   𝑥,𝐷   𝑥,𝐸   𝜑,𝑘   𝑥,𝐺   𝑥,𝐻   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑘)   𝐸(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑋(𝑘)   0 (𝑥,𝑘)

Proof of Theorem gsumfzmhm2
StepHypRef Expression
1 gsummhm2.b . . 3 𝐵 = (Base‘𝐺)
2 gsummhm2.z . . 3 0 = (0g𝐺)
3 gsummhm2.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsummhm2.h . . 3 (𝜑𝐻 ∈ Mnd)
5 gsumfzmhm2.m . . 3 (𝜑𝑀 ∈ ℤ)
6 gsumfzmhm2.n . . 3 (𝜑𝑁 ∈ ℤ)
7 gsummhm2.k . . 3 (𝜑 → (𝑥𝐵𝐶) ∈ (𝐺 MndHom 𝐻))
8 gsumfzmhm2.f . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑋𝐵)
98fmpttd 5720 . . 3 (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋):(𝑀...𝑁)⟶𝐵)
101, 2, 3, 4, 5, 6, 7, 9gsumfzmhm 13549 . 2 (𝜑 → (𝐻 Σg ((𝑥𝐵𝐶) ∘ (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) = ((𝑥𝐵𝐶)‘(𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))))
11 eqidd 2197 . . . 4 (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))
12 eqidd 2197 . . . 4 (𝜑 → (𝑥𝐵𝐶) = (𝑥𝐵𝐶))
13 gsummhm2.1 . . . 4 (𝑥 = 𝑋𝐶 = 𝐷)
148, 11, 12, 13fmptco 5731 . . 3 (𝜑 → ((𝑥𝐵𝐶) ∘ (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷))
1514oveq2d 5941 . 2 (𝜑 → (𝐻 Σg ((𝑥𝐵𝐶) ∘ (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) = (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)))
16 eqid 2196 . . 3 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
17 gsumfzmhm2.2 . . 3 (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → 𝐶 = 𝐸)
183cmnmndd 13514 . . . 4 (𝜑𝐺 ∈ Mnd)
191, 2, 18, 5, 6, 9gsumfzcl 13201 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) ∈ 𝐵)
2017eleq1d 2265 . . . 4 (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → (𝐶 ∈ (Base‘𝐻) ↔ 𝐸 ∈ (Base‘𝐻)))
21 eqid 2196 . . . . . . 7 (Base‘𝐻) = (Base‘𝐻)
221, 21mhmf 13167 . . . . . 6 ((𝑥𝐵𝐶) ∈ (𝐺 MndHom 𝐻) → (𝑥𝐵𝐶):𝐵⟶(Base‘𝐻))
237, 22syl 14 . . . . 5 (𝜑 → (𝑥𝐵𝐶):𝐵⟶(Base‘𝐻))
2416fmpt 5715 . . . . 5 (∀𝑥𝐵 𝐶 ∈ (Base‘𝐻) ↔ (𝑥𝐵𝐶):𝐵⟶(Base‘𝐻))
2523, 24sylibr 134 . . . 4 (𝜑 → ∀𝑥𝐵 𝐶 ∈ (Base‘𝐻))
2620, 25, 19rspcdva 2873 . . 3 (𝜑𝐸 ∈ (Base‘𝐻))
2716, 17, 19, 26fvmptd3 5658 . 2 (𝜑 → ((𝑥𝐵𝐶)‘(𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) = 𝐸)
2810, 15, 273eqtr3d 2237 1 (𝜑 → (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) = 𝐸)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  cmpt 4095  ccom 4668  wf 5255  cfv 5259  (class class class)co 5925  cz 9343  ...cfz 10100  Basecbs 12703  0gc0g 12958   Σg cgsu 12959  Mndcmnd 13118   MndHom cmhm 13159  CMndccmn 13490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-map 6718  df-en 6809  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-igsum 12961  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-cmn 13492
This theorem is referenced by:  lgseisenlem4  15398
  Copyright terms: Public domain W3C validator