| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzmhm2 | GIF version | ||
| Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.) |
| Ref | Expression |
|---|---|
| gsummhm2.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummhm2.z | ⊢ 0 = (0g‘𝐺) |
| gsummhm2.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummhm2.h | ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| gsumfzmhm2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsumfzmhm2.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| gsummhm2.k | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) |
| gsumfzmhm2.f | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑋 ∈ 𝐵) |
| gsummhm2.1 | ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷) |
| gsumfzmhm2.2 | ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → 𝐶 = 𝐸) |
| Ref | Expression |
|---|---|
| gsumfzmhm2 | ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) = 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummhm2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsummhm2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsummhm2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsummhm2.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ Mnd) | |
| 5 | gsumfzmhm2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 6 | gsumfzmhm2.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 7 | gsummhm2.k | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) | |
| 8 | gsumfzmhm2.f | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑋 ∈ 𝐵) | |
| 9 | 8 | fmpttd 5720 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋):(𝑀...𝑁)⟶𝐵) |
| 10 | 1, 2, 3, 4, 5, 6, 7, 9 | gsumfzmhm 13549 | . 2 ⊢ (𝜑 → (𝐻 Σg ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) = ((𝑥 ∈ 𝐵 ↦ 𝐶)‘(𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)))) |
| 11 | eqidd 2197 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) | |
| 12 | eqidd 2197 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
| 13 | gsummhm2.1 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷) | |
| 14 | 8, 11, 12, 13 | fmptco 5731 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) |
| 15 | 14 | oveq2d 5941 | . 2 ⊢ (𝜑 → (𝐻 Σg ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) = (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷))) |
| 16 | eqid 2196 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 17 | gsumfzmhm2.2 | . . 3 ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → 𝐶 = 𝐸) | |
| 18 | 3 | cmnmndd 13514 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 19 | 1, 2, 18, 5, 6, 9 | gsumfzcl 13201 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) ∈ 𝐵) |
| 20 | 17 | eleq1d 2265 | . . . 4 ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → (𝐶 ∈ (Base‘𝐻) ↔ 𝐸 ∈ (Base‘𝐻))) |
| 21 | eqid 2196 | . . . . . . 7 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 22 | 1, 21 | mhmf 13167 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻) → (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
| 23 | 7, 22 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
| 24 | 16 | fmpt 5715 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐵 𝐶 ∈ (Base‘𝐻) ↔ (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
| 25 | 23, 24 | sylibr 134 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ (Base‘𝐻)) |
| 26 | 20, 25, 19 | rspcdva 2873 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (Base‘𝐻)) |
| 27 | 16, 17, 19, 26 | fvmptd3 5658 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘(𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) = 𝐸) |
| 28 | 10, 15, 27 | 3eqtr3d 2237 | 1 ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) = 𝐸) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ↦ cmpt 4095 ∘ ccom 4668 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 ℤcz 9343 ...cfz 10100 Basecbs 12703 0gc0g 12958 Σg cgsu 12959 Mndcmnd 13118 MndHom cmhm 13159 CMndccmn 13490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-1o 6483 df-er 6601 df-map 6718 df-en 6809 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-igsum 12961 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-mhm 13161 df-cmn 13492 |
| This theorem is referenced by: lgseisenlem4 15398 |
| Copyright terms: Public domain | W3C validator |