![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gsumfzmhm2 | GIF version |
Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.) |
Ref | Expression |
---|---|
gsummhm2.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummhm2.z | ⊢ 0 = (0g‘𝐺) |
gsummhm2.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummhm2.h | ⊢ (𝜑 → 𝐻 ∈ Mnd) |
gsumfzmhm2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
gsumfzmhm2.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
gsummhm2.k | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) |
gsumfzmhm2.f | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑋 ∈ 𝐵) |
gsummhm2.1 | ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷) |
gsumfzmhm2.2 | ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → 𝐶 = 𝐸) |
Ref | Expression |
---|---|
gsumfzmhm2 | ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummhm2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummhm2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsummhm2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsummhm2.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ Mnd) | |
5 | gsumfzmhm2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
6 | gsumfzmhm2.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
7 | gsummhm2.k | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) | |
8 | gsumfzmhm2.f | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑋 ∈ 𝐵) | |
9 | 8 | fmpttd 5714 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋):(𝑀...𝑁)⟶𝐵) |
10 | 1, 2, 3, 4, 5, 6, 7, 9 | gsumfzmhm 13416 | . 2 ⊢ (𝜑 → (𝐻 Σg ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) = ((𝑥 ∈ 𝐵 ↦ 𝐶)‘(𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)))) |
11 | eqidd 2194 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) | |
12 | eqidd 2194 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
13 | gsummhm2.1 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷) | |
14 | 8, 11, 12, 13 | fmptco 5725 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) |
15 | 14 | oveq2d 5935 | . 2 ⊢ (𝜑 → (𝐻 Σg ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) = (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷))) |
16 | eqid 2193 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
17 | gsumfzmhm2.2 | . . 3 ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → 𝐶 = 𝐸) | |
18 | 3 | cmnmndd 13381 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
19 | 1, 2, 18, 5, 6, 9 | gsumfzcl 13074 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) ∈ 𝐵) |
20 | 17 | eleq1d 2262 | . . . 4 ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → (𝐶 ∈ (Base‘𝐻) ↔ 𝐸 ∈ (Base‘𝐻))) |
21 | eqid 2193 | . . . . . . 7 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
22 | 1, 21 | mhmf 13040 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻) → (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
23 | 7, 22 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
24 | 16 | fmpt 5709 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐵 𝐶 ∈ (Base‘𝐻) ↔ (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
25 | 23, 24 | sylibr 134 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ (Base‘𝐻)) |
26 | 20, 25, 19 | rspcdva 2870 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (Base‘𝐻)) |
27 | 16, 17, 19, 26 | fvmptd3 5652 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘(𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) = 𝐸) |
28 | 10, 15, 27 | 3eqtr3d 2234 | 1 ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) = 𝐸) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ↦ cmpt 4091 ∘ ccom 4664 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 ℤcz 9320 ...cfz 10077 Basecbs 12621 0gc0g 12870 Σg cgsu 12871 Mndcmnd 13000 MndHom cmhm 13032 CMndccmn 13357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-1o 6471 df-er 6589 df-map 6706 df-en 6797 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-2 9043 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-0g 12872 df-igsum 12873 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-mhm 13034 df-cmn 13359 |
This theorem is referenced by: lgseisenlem4 15230 |
Copyright terms: Public domain | W3C validator |