| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzmhm2 | GIF version | ||
| Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.) |
| Ref | Expression |
|---|---|
| gsummhm2.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummhm2.z | ⊢ 0 = (0g‘𝐺) |
| gsummhm2.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummhm2.h | ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| gsumfzmhm2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsumfzmhm2.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| gsummhm2.k | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) |
| gsumfzmhm2.f | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑋 ∈ 𝐵) |
| gsummhm2.1 | ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷) |
| gsumfzmhm2.2 | ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → 𝐶 = 𝐸) |
| Ref | Expression |
|---|---|
| gsumfzmhm2 | ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) = 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummhm2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsummhm2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsummhm2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsummhm2.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ Mnd) | |
| 5 | gsumfzmhm2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 6 | gsumfzmhm2.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 7 | gsummhm2.k | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) | |
| 8 | gsumfzmhm2.f | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑋 ∈ 𝐵) | |
| 9 | 8 | fmpttd 5792 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋):(𝑀...𝑁)⟶𝐵) |
| 10 | 1, 2, 3, 4, 5, 6, 7, 9 | gsumfzmhm 13888 | . 2 ⊢ (𝜑 → (𝐻 Σg ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) = ((𝑥 ∈ 𝐵 ↦ 𝐶)‘(𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)))) |
| 11 | eqidd 2230 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) | |
| 12 | eqidd 2230 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
| 13 | gsummhm2.1 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷) | |
| 14 | 8, 11, 12, 13 | fmptco 5803 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) |
| 15 | 14 | oveq2d 6023 | . 2 ⊢ (𝜑 → (𝐻 Σg ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) = (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷))) |
| 16 | eqid 2229 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 17 | gsumfzmhm2.2 | . . 3 ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → 𝐶 = 𝐸) | |
| 18 | 3 | cmnmndd 13853 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 19 | 1, 2, 18, 5, 6, 9 | gsumfzcl 13540 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) ∈ 𝐵) |
| 20 | 17 | eleq1d 2298 | . . . 4 ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → (𝐶 ∈ (Base‘𝐻) ↔ 𝐸 ∈ (Base‘𝐻))) |
| 21 | eqid 2229 | . . . . . . 7 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 22 | 1, 21 | mhmf 13506 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻) → (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
| 23 | 7, 22 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
| 24 | 16 | fmpt 5787 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐵 𝐶 ∈ (Base‘𝐻) ↔ (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
| 25 | 23, 24 | sylibr 134 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ (Base‘𝐻)) |
| 26 | 20, 25, 19 | rspcdva 2912 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (Base‘𝐻)) |
| 27 | 16, 17, 19, 26 | fvmptd3 5730 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘(𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) = 𝐸) |
| 28 | 10, 15, 27 | 3eqtr3d 2270 | 1 ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) = 𝐸) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ↦ cmpt 4145 ∘ ccom 4723 ⟶wf 5314 ‘cfv 5318 (class class class)co 6007 ℤcz 9454 ...cfz 10212 Basecbs 13040 0gc0g 13297 Σg cgsu 13298 Mndcmnd 13457 MndHom cmhm 13498 CMndccmn 13829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-1o 6568 df-er 6688 df-map 6805 df-en 6896 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-fzo 10347 df-seqfrec 10678 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-0g 13299 df-igsum 13300 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-mhm 13500 df-cmn 13831 |
| This theorem is referenced by: lgseisenlem4 15760 |
| Copyright terms: Public domain | W3C validator |