| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzmhm2 | GIF version | ||
| Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.) |
| Ref | Expression |
|---|---|
| gsummhm2.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummhm2.z | ⊢ 0 = (0g‘𝐺) |
| gsummhm2.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummhm2.h | ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| gsumfzmhm2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsumfzmhm2.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| gsummhm2.k | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) |
| gsumfzmhm2.f | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑋 ∈ 𝐵) |
| gsummhm2.1 | ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷) |
| gsumfzmhm2.2 | ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → 𝐶 = 𝐸) |
| Ref | Expression |
|---|---|
| gsumfzmhm2 | ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) = 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummhm2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsummhm2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsummhm2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsummhm2.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ Mnd) | |
| 5 | gsumfzmhm2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 6 | gsumfzmhm2.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 7 | gsummhm2.k | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) | |
| 8 | gsumfzmhm2.f | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑋 ∈ 𝐵) | |
| 9 | 8 | fmpttd 5742 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋):(𝑀...𝑁)⟶𝐵) |
| 10 | 1, 2, 3, 4, 5, 6, 7, 9 | gsumfzmhm 13723 | . 2 ⊢ (𝜑 → (𝐻 Σg ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) = ((𝑥 ∈ 𝐵 ↦ 𝐶)‘(𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)))) |
| 11 | eqidd 2207 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) | |
| 12 | eqidd 2207 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
| 13 | gsummhm2.1 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷) | |
| 14 | 8, 11, 12, 13 | fmptco 5753 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) |
| 15 | 14 | oveq2d 5967 | . 2 ⊢ (𝜑 → (𝐻 Σg ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) = (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷))) |
| 16 | eqid 2206 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 17 | gsumfzmhm2.2 | . . 3 ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → 𝐶 = 𝐸) | |
| 18 | 3 | cmnmndd 13688 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 19 | 1, 2, 18, 5, 6, 9 | gsumfzcl 13375 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) ∈ 𝐵) |
| 20 | 17 | eleq1d 2275 | . . . 4 ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → (𝐶 ∈ (Base‘𝐻) ↔ 𝐸 ∈ (Base‘𝐻))) |
| 21 | eqid 2206 | . . . . . . 7 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 22 | 1, 21 | mhmf 13341 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻) → (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
| 23 | 7, 22 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
| 24 | 16 | fmpt 5737 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐵 𝐶 ∈ (Base‘𝐻) ↔ (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
| 25 | 23, 24 | sylibr 134 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ (Base‘𝐻)) |
| 26 | 20, 25, 19 | rspcdva 2883 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (Base‘𝐻)) |
| 27 | 16, 17, 19, 26 | fvmptd3 5680 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘(𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) = 𝐸) |
| 28 | 10, 15, 27 | 3eqtr3d 2247 | 1 ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) = 𝐸) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ↦ cmpt 4109 ∘ ccom 4683 ⟶wf 5272 ‘cfv 5276 (class class class)co 5951 ℤcz 9379 ...cfz 10137 Basecbs 12876 0gc0g 13132 Σg cgsu 13133 Mndcmnd 13292 MndHom cmhm 13333 CMndccmn 13664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-1o 6509 df-er 6627 df-map 6744 df-en 6835 df-fin 6837 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-n0 9303 df-z 9380 df-uz 9656 df-fz 10138 df-fzo 10272 df-seqfrec 10600 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-0g 13134 df-igsum 13135 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-mhm 13335 df-cmn 13666 |
| This theorem is referenced by: lgseisenlem4 15594 |
| Copyright terms: Public domain | W3C validator |