ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islidlm GIF version

Theorem islidlm 14285
Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
islidl.s 𝑈 = (LIdeal‘𝑅)
islidl.b 𝐵 = (Base‘𝑅)
islidl.p + = (+g𝑅)
islidl.t · = (.r𝑅)
Assertion
Ref Expression
islidlm (𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
Distinct variable groups:   𝑥,𝐵   𝐼,𝑎,𝑏,𝑗,𝑥   𝑅,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑗,𝑎,𝑏)   + (𝑥,𝑗,𝑎,𝑏)   𝑅(𝑗)   · (𝑥,𝑗,𝑎,𝑏)   𝑈(𝑥,𝑗,𝑎,𝑏)

Proof of Theorem islidlm
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 islidl.s . . 3 𝑈 = (LIdeal‘𝑅)
21lidlmex 14281 . 2 (𝐼𝑈𝑅 ∈ V)
3 eleq1w 2267 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝐼𝑘𝐼))
43cbvexv 1943 . . . . 5 (∃𝑗 𝑗𝐼 ↔ ∃𝑘 𝑘𝐼)
5 ssel 3188 . . . . . . 7 (𝐼𝐵 → (𝑘𝐼𝑘𝐵))
6 islidl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
76basmex 12935 . . . . . . 7 (𝑘𝐵𝑅 ∈ V)
85, 7syl6 33 . . . . . 6 (𝐼𝐵 → (𝑘𝐼𝑅 ∈ V))
98exlimdv 1843 . . . . 5 (𝐼𝐵 → (∃𝑘 𝑘𝐼𝑅 ∈ V))
104, 9biimtrid 152 . . . 4 (𝐼𝐵 → (∃𝑗 𝑗𝐼𝑅 ∈ V))
1110imp 124 . . 3 ((𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) → 𝑅 ∈ V)
12113adant3 1020 . 2 ((𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼) → 𝑅 ∈ V)
13 eqid 2206 . . . 4 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
14 eqid 2206 . . . 4 (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅)))
15 eqid 2206 . . . 4 (Base‘(ringLMod‘𝑅)) = (Base‘(ringLMod‘𝑅))
16 eqid 2206 . . . 4 (+g‘(ringLMod‘𝑅)) = (+g‘(ringLMod‘𝑅))
17 eqid 2206 . . . 4 ( ·𝑠 ‘(ringLMod‘𝑅)) = ( ·𝑠 ‘(ringLMod‘𝑅))
18 eqid 2206 . . . 4 (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅))
1913, 14, 15, 16, 17, 18islssm 14163 . . 3 (𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)) ↔ (𝐼 ⊆ (Base‘(ringLMod‘𝑅)) ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎𝐼𝑏𝐼 ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))
20 lidlvalg 14277 . . . . . 6 (𝑅 ∈ V → (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅)))
211, 20eqtrid 2251 . . . . 5 (𝑅 ∈ V → 𝑈 = (LSubSp‘(ringLMod‘𝑅)))
2221eleq2d 2276 . . . 4 (𝑅 ∈ V → (𝐼𝑈𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))))
23 rlmbasg 14261 . . . . . . 7 (𝑅 ∈ V → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
246, 23eqtrid 2251 . . . . . 6 (𝑅 ∈ V → 𝐵 = (Base‘(ringLMod‘𝑅)))
2524sseq2d 3224 . . . . 5 (𝑅 ∈ V → (𝐼𝐵𝐼 ⊆ (Base‘(ringLMod‘𝑅))))
26 rlmscabas 14266 . . . . . . 7 (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅))))
276, 26eqtrid 2251 . . . . . 6 (𝑅 ∈ V → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝑅))))
28 islidl.p . . . . . . . . . 10 + = (+g𝑅)
29 rlmplusgg 14262 . . . . . . . . . 10 (𝑅 ∈ V → (+g𝑅) = (+g‘(ringLMod‘𝑅)))
3028, 29eqtrid 2251 . . . . . . . . 9 (𝑅 ∈ V → + = (+g‘(ringLMod‘𝑅)))
31 islidl.t . . . . . . . . . . 11 · = (.r𝑅)
32 rlmvscag 14267 . . . . . . . . . . 11 (𝑅 ∈ V → (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)))
3331, 32eqtrid 2251 . . . . . . . . . 10 (𝑅 ∈ V → · = ( ·𝑠 ‘(ringLMod‘𝑅)))
3433oveqd 5968 . . . . . . . . 9 (𝑅 ∈ V → (𝑥 · 𝑎) = (𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎))
35 eqidd 2207 . . . . . . . . 9 (𝑅 ∈ V → 𝑏 = 𝑏)
3630, 34, 35oveq123d 5972 . . . . . . . 8 (𝑅 ∈ V → ((𝑥 · 𝑎) + 𝑏) = ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏))
3736eleq1d 2275 . . . . . . 7 (𝑅 ∈ V → (((𝑥 · 𝑎) + 𝑏) ∈ 𝐼 ↔ ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))
38372ralbidv 2531 . . . . . 6 (𝑅 ∈ V → (∀𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼 ↔ ∀𝑎𝐼𝑏𝐼 ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))
3927, 38raleqbidv 2719 . . . . 5 (𝑅 ∈ V → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼 ↔ ∀𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎𝐼𝑏𝐼 ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))
4025, 393anbi13d 1327 . . . 4 (𝑅 ∈ V → ((𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼) ↔ (𝐼 ⊆ (Base‘(ringLMod‘𝑅)) ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎𝐼𝑏𝐼 ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼)))
4122, 40bibi12d 235 . . 3 (𝑅 ∈ V → ((𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼)) ↔ (𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)) ↔ (𝐼 ⊆ (Base‘(ringLMod‘𝑅)) ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎𝐼𝑏𝐼 ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))))
4219, 41mpbiri 168 . 2 (𝑅 ∈ V → (𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼)))
432, 12, 42pm5.21nii 706 1 (𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
Colors of variables: wff set class
Syntax hints:  wb 105  w3a 981   = wceq 1373  wex 1516  wcel 2177  wral 2485  Vcvv 2773  wss 3167  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  .rcmulr 12954  Scalarcsca 12956   ·𝑠 cvsca 12957  LSubSpclss 14158  ringLModcrglmod 14240  LIdealclidl 14273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-ip 12971  df-lssm 14159  df-sra 14241  df-rgmod 14242  df-lidl 14275
This theorem is referenced by:  rnglidlmcl  14286  dflidl2rng  14287
  Copyright terms: Public domain W3C validator