| Step | Hyp | Ref
| Expression |
| 1 | | islidl.s |
. . 3
⊢ 𝑈 = (LIdeal‘𝑅) |
| 2 | 1 | lidlmex 14031 |
. 2
⊢ (𝐼 ∈ 𝑈 → 𝑅 ∈ V) |
| 3 | | eleq1w 2257 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐼 ↔ 𝑘 ∈ 𝐼)) |
| 4 | 3 | cbvexv 1933 |
. . . . 5
⊢
(∃𝑗 𝑗 ∈ 𝐼 ↔ ∃𝑘 𝑘 ∈ 𝐼) |
| 5 | | ssel 3177 |
. . . . . . 7
⊢ (𝐼 ⊆ 𝐵 → (𝑘 ∈ 𝐼 → 𝑘 ∈ 𝐵)) |
| 6 | | islidl.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
| 7 | 6 | basmex 12737 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐵 → 𝑅 ∈ V) |
| 8 | 5, 7 | syl6 33 |
. . . . . 6
⊢ (𝐼 ⊆ 𝐵 → (𝑘 ∈ 𝐼 → 𝑅 ∈ V)) |
| 9 | 8 | exlimdv 1833 |
. . . . 5
⊢ (𝐼 ⊆ 𝐵 → (∃𝑘 𝑘 ∈ 𝐼 → 𝑅 ∈ V)) |
| 10 | 4, 9 | biimtrid 152 |
. . . 4
⊢ (𝐼 ⊆ 𝐵 → (∃𝑗 𝑗 ∈ 𝐼 → 𝑅 ∈ V)) |
| 11 | 10 | imp 124 |
. . 3
⊢ ((𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼) → 𝑅 ∈ V) |
| 12 | 11 | 3adant3 1019 |
. 2
⊢ ((𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼) → 𝑅 ∈ V) |
| 13 | | eqid 2196 |
. . . 4
⊢
(Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) |
| 14 | | eqid 2196 |
. . . 4
⊢
(Base‘(Scalar‘(ringLMod‘𝑅))) =
(Base‘(Scalar‘(ringLMod‘𝑅))) |
| 15 | | eqid 2196 |
. . . 4
⊢
(Base‘(ringLMod‘𝑅)) = (Base‘(ringLMod‘𝑅)) |
| 16 | | eqid 2196 |
. . . 4
⊢
(+g‘(ringLMod‘𝑅)) =
(+g‘(ringLMod‘𝑅)) |
| 17 | | eqid 2196 |
. . . 4
⊢ (
·𝑠 ‘(ringLMod‘𝑅)) = ( ·𝑠
‘(ringLMod‘𝑅)) |
| 18 | | eqid 2196 |
. . . 4
⊢
(LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅)) |
| 19 | 13, 14, 15, 16, 17, 18 | islssm 13913 |
. . 3
⊢ (𝐼 ∈
(LSubSp‘(ringLMod‘𝑅)) ↔ (𝐼 ⊆ (Base‘(ringLMod‘𝑅)) ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈
(Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥( ·𝑠
‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼)) |
| 20 | | lidlvalg 14027 |
. . . . . 6
⊢ (𝑅 ∈ V →
(LIdeal‘𝑅) =
(LSubSp‘(ringLMod‘𝑅))) |
| 21 | 1, 20 | eqtrid 2241 |
. . . . 5
⊢ (𝑅 ∈ V → 𝑈 =
(LSubSp‘(ringLMod‘𝑅))) |
| 22 | 21 | eleq2d 2266 |
. . . 4
⊢ (𝑅 ∈ V → (𝐼 ∈ 𝑈 ↔ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)))) |
| 23 | | rlmbasg 14011 |
. . . . . . 7
⊢ (𝑅 ∈ V →
(Base‘𝑅) =
(Base‘(ringLMod‘𝑅))) |
| 24 | 6, 23 | eqtrid 2241 |
. . . . . 6
⊢ (𝑅 ∈ V → 𝐵 =
(Base‘(ringLMod‘𝑅))) |
| 25 | 24 | sseq2d 3213 |
. . . . 5
⊢ (𝑅 ∈ V → (𝐼 ⊆ 𝐵 ↔ 𝐼 ⊆ (Base‘(ringLMod‘𝑅)))) |
| 26 | | rlmscabas 14016 |
. . . . . . 7
⊢ (𝑅 ∈ V →
(Base‘𝑅) =
(Base‘(Scalar‘(ringLMod‘𝑅)))) |
| 27 | 6, 26 | eqtrid 2241 |
. . . . . 6
⊢ (𝑅 ∈ V → 𝐵 =
(Base‘(Scalar‘(ringLMod‘𝑅)))) |
| 28 | | islidl.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝑅) |
| 29 | | rlmplusgg 14012 |
. . . . . . . . . 10
⊢ (𝑅 ∈ V →
(+g‘𝑅) =
(+g‘(ringLMod‘𝑅))) |
| 30 | 28, 29 | eqtrid 2241 |
. . . . . . . . 9
⊢ (𝑅 ∈ V → + =
(+g‘(ringLMod‘𝑅))) |
| 31 | | islidl.t |
. . . . . . . . . . 11
⊢ · =
(.r‘𝑅) |
| 32 | | rlmvscag 14017 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ V →
(.r‘𝑅) = (
·𝑠 ‘(ringLMod‘𝑅))) |
| 33 | 31, 32 | eqtrid 2241 |
. . . . . . . . . 10
⊢ (𝑅 ∈ V → · = (
·𝑠 ‘(ringLMod‘𝑅))) |
| 34 | 33 | oveqd 5939 |
. . . . . . . . 9
⊢ (𝑅 ∈ V → (𝑥 · 𝑎) = (𝑥( ·𝑠
‘(ringLMod‘𝑅))𝑎)) |
| 35 | | eqidd 2197 |
. . . . . . . . 9
⊢ (𝑅 ∈ V → 𝑏 = 𝑏) |
| 36 | 30, 34, 35 | oveq123d 5943 |
. . . . . . . 8
⊢ (𝑅 ∈ V → ((𝑥 · 𝑎) + 𝑏) = ((𝑥( ·𝑠
‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏)) |
| 37 | 36 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑅 ∈ V → (((𝑥 · 𝑎) + 𝑏) ∈ 𝐼 ↔ ((𝑥( ·𝑠
‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼)) |
| 38 | 37 | 2ralbidv 2521 |
. . . . . 6
⊢ (𝑅 ∈ V → (∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼 ↔ ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥( ·𝑠
‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼)) |
| 39 | 27, 38 | raleqbidv 2709 |
. . . . 5
⊢ (𝑅 ∈ V → (∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼 ↔ ∀𝑥 ∈
(Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥( ·𝑠
‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼)) |
| 40 | 25, 39 | 3anbi13d 1325 |
. . . 4
⊢ (𝑅 ∈ V → ((𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼) ↔ (𝐼 ⊆ (Base‘(ringLMod‘𝑅)) ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈
(Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥( ·𝑠
‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))) |
| 41 | 22, 40 | bibi12d 235 |
. . 3
⊢ (𝑅 ∈ V → ((𝐼 ∈ 𝑈 ↔ (𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼)) ↔ (𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)) ↔ (𝐼 ⊆ (Base‘(ringLMod‘𝑅)) ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈
(Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥( ·𝑠
‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼)))) |
| 42 | 19, 41 | mpbiri 168 |
. 2
⊢ (𝑅 ∈ V → (𝐼 ∈ 𝑈 ↔ (𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))) |
| 43 | 2, 12, 42 | pm5.21nii 705 |
1
⊢ (𝐼 ∈ 𝑈 ↔ (𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼)) |