Step | Hyp | Ref
| Expression |
1 | | islidl.s |
. . 3
⊢ 𝑈 = (LIdeal‘𝑅) |
2 | 1 | lidlmex 13784 |
. 2
⊢ (𝐼 ∈ 𝑈 → 𝑅 ∈ V) |
3 | | eleq1w 2250 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐼 ↔ 𝑘 ∈ 𝐼)) |
4 | 3 | cbvexv 1930 |
. . . . 5
⊢
(∃𝑗 𝑗 ∈ 𝐼 ↔ ∃𝑘 𝑘 ∈ 𝐼) |
5 | | ssel 3164 |
. . . . . . 7
⊢ (𝐼 ⊆ 𝐵 → (𝑘 ∈ 𝐼 → 𝑘 ∈ 𝐵)) |
6 | | islidl.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
7 | 6 | basmex 12566 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐵 → 𝑅 ∈ V) |
8 | 5, 7 | syl6 33 |
. . . . . 6
⊢ (𝐼 ⊆ 𝐵 → (𝑘 ∈ 𝐼 → 𝑅 ∈ V)) |
9 | 8 | exlimdv 1830 |
. . . . 5
⊢ (𝐼 ⊆ 𝐵 → (∃𝑘 𝑘 ∈ 𝐼 → 𝑅 ∈ V)) |
10 | 4, 9 | biimtrid 152 |
. . . 4
⊢ (𝐼 ⊆ 𝐵 → (∃𝑗 𝑗 ∈ 𝐼 → 𝑅 ∈ V)) |
11 | 10 | imp 124 |
. . 3
⊢ ((𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼) → 𝑅 ∈ V) |
12 | 11 | 3adant3 1019 |
. 2
⊢ ((𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼) → 𝑅 ∈ V) |
13 | | eqid 2189 |
. . . 4
⊢
(Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) |
14 | | eqid 2189 |
. . . 4
⊢
(Base‘(Scalar‘(ringLMod‘𝑅))) =
(Base‘(Scalar‘(ringLMod‘𝑅))) |
15 | | eqid 2189 |
. . . 4
⊢
(Base‘(ringLMod‘𝑅)) = (Base‘(ringLMod‘𝑅)) |
16 | | eqid 2189 |
. . . 4
⊢
(+g‘(ringLMod‘𝑅)) =
(+g‘(ringLMod‘𝑅)) |
17 | | eqid 2189 |
. . . 4
⊢ (
·𝑠 ‘(ringLMod‘𝑅)) = ( ·𝑠
‘(ringLMod‘𝑅)) |
18 | | eqid 2189 |
. . . 4
⊢
(LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅)) |
19 | 13, 14, 15, 16, 17, 18 | islssm 13666 |
. . 3
⊢ (𝐼 ∈
(LSubSp‘(ringLMod‘𝑅)) ↔ (𝐼 ⊆ (Base‘(ringLMod‘𝑅)) ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈
(Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥( ·𝑠
‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼)) |
20 | | lidlvalg 13780 |
. . . . . 6
⊢ (𝑅 ∈ V →
(LIdeal‘𝑅) =
(LSubSp‘(ringLMod‘𝑅))) |
21 | 1, 20 | eqtrid 2234 |
. . . . 5
⊢ (𝑅 ∈ V → 𝑈 =
(LSubSp‘(ringLMod‘𝑅))) |
22 | 21 | eleq2d 2259 |
. . . 4
⊢ (𝑅 ∈ V → (𝐼 ∈ 𝑈 ↔ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)))) |
23 | | rlmbasg 13764 |
. . . . . . 7
⊢ (𝑅 ∈ V →
(Base‘𝑅) =
(Base‘(ringLMod‘𝑅))) |
24 | 6, 23 | eqtrid 2234 |
. . . . . 6
⊢ (𝑅 ∈ V → 𝐵 =
(Base‘(ringLMod‘𝑅))) |
25 | 24 | sseq2d 3200 |
. . . . 5
⊢ (𝑅 ∈ V → (𝐼 ⊆ 𝐵 ↔ 𝐼 ⊆ (Base‘(ringLMod‘𝑅)))) |
26 | | rlmscabas 13769 |
. . . . . . 7
⊢ (𝑅 ∈ V →
(Base‘𝑅) =
(Base‘(Scalar‘(ringLMod‘𝑅)))) |
27 | 6, 26 | eqtrid 2234 |
. . . . . 6
⊢ (𝑅 ∈ V → 𝐵 =
(Base‘(Scalar‘(ringLMod‘𝑅)))) |
28 | | islidl.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝑅) |
29 | | rlmplusgg 13765 |
. . . . . . . . . 10
⊢ (𝑅 ∈ V →
(+g‘𝑅) =
(+g‘(ringLMod‘𝑅))) |
30 | 28, 29 | eqtrid 2234 |
. . . . . . . . 9
⊢ (𝑅 ∈ V → + =
(+g‘(ringLMod‘𝑅))) |
31 | | islidl.t |
. . . . . . . . . . 11
⊢ · =
(.r‘𝑅) |
32 | | rlmvscag 13770 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ V →
(.r‘𝑅) = (
·𝑠 ‘(ringLMod‘𝑅))) |
33 | 31, 32 | eqtrid 2234 |
. . . . . . . . . 10
⊢ (𝑅 ∈ V → · = (
·𝑠 ‘(ringLMod‘𝑅))) |
34 | 33 | oveqd 5909 |
. . . . . . . . 9
⊢ (𝑅 ∈ V → (𝑥 · 𝑎) = (𝑥( ·𝑠
‘(ringLMod‘𝑅))𝑎)) |
35 | | eqidd 2190 |
. . . . . . . . 9
⊢ (𝑅 ∈ V → 𝑏 = 𝑏) |
36 | 30, 34, 35 | oveq123d 5913 |
. . . . . . . 8
⊢ (𝑅 ∈ V → ((𝑥 · 𝑎) + 𝑏) = ((𝑥( ·𝑠
‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏)) |
37 | 36 | eleq1d 2258 |
. . . . . . 7
⊢ (𝑅 ∈ V → (((𝑥 · 𝑎) + 𝑏) ∈ 𝐼 ↔ ((𝑥( ·𝑠
‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼)) |
38 | 37 | 2ralbidv 2514 |
. . . . . 6
⊢ (𝑅 ∈ V → (∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼 ↔ ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥( ·𝑠
‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼)) |
39 | 27, 38 | raleqbidv 2698 |
. . . . 5
⊢ (𝑅 ∈ V → (∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼 ↔ ∀𝑥 ∈
(Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥( ·𝑠
‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼)) |
40 | 25, 39 | 3anbi13d 1325 |
. . . 4
⊢ (𝑅 ∈ V → ((𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼) ↔ (𝐼 ⊆ (Base‘(ringLMod‘𝑅)) ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈
(Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥( ·𝑠
‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))) |
41 | 22, 40 | bibi12d 235 |
. . 3
⊢ (𝑅 ∈ V → ((𝐼 ∈ 𝑈 ↔ (𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼)) ↔ (𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)) ↔ (𝐼 ⊆ (Base‘(ringLMod‘𝑅)) ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈
(Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥( ·𝑠
‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼)))) |
42 | 19, 41 | mpbiri 168 |
. 2
⊢ (𝑅 ∈ V → (𝐼 ∈ 𝑈 ↔ (𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))) |
43 | 2, 12, 42 | pm5.21nii 705 |
1
⊢ (𝐼 ∈ 𝑈 ↔ (𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼)) |