ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islidlm GIF version

Theorem islidlm 14451
Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
islidl.s 𝑈 = (LIdeal‘𝑅)
islidl.b 𝐵 = (Base‘𝑅)
islidl.p + = (+g𝑅)
islidl.t · = (.r𝑅)
Assertion
Ref Expression
islidlm (𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
Distinct variable groups:   𝑥,𝐵   𝐼,𝑎,𝑏,𝑗,𝑥   𝑅,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑗,𝑎,𝑏)   + (𝑥,𝑗,𝑎,𝑏)   𝑅(𝑗)   · (𝑥,𝑗,𝑎,𝑏)   𝑈(𝑥,𝑗,𝑎,𝑏)

Proof of Theorem islidlm
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 islidl.s . . 3 𝑈 = (LIdeal‘𝑅)
21lidlmex 14447 . 2 (𝐼𝑈𝑅 ∈ V)
3 eleq1w 2290 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝐼𝑘𝐼))
43cbvexv 1965 . . . . 5 (∃𝑗 𝑗𝐼 ↔ ∃𝑘 𝑘𝐼)
5 ssel 3218 . . . . . . 7 (𝐼𝐵 → (𝑘𝐼𝑘𝐵))
6 islidl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
76basmex 13100 . . . . . . 7 (𝑘𝐵𝑅 ∈ V)
85, 7syl6 33 . . . . . 6 (𝐼𝐵 → (𝑘𝐼𝑅 ∈ V))
98exlimdv 1865 . . . . 5 (𝐼𝐵 → (∃𝑘 𝑘𝐼𝑅 ∈ V))
104, 9biimtrid 152 . . . 4 (𝐼𝐵 → (∃𝑗 𝑗𝐼𝑅 ∈ V))
1110imp 124 . . 3 ((𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) → 𝑅 ∈ V)
12113adant3 1041 . 2 ((𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼) → 𝑅 ∈ V)
13 eqid 2229 . . . 4 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
14 eqid 2229 . . . 4 (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅)))
15 eqid 2229 . . . 4 (Base‘(ringLMod‘𝑅)) = (Base‘(ringLMod‘𝑅))
16 eqid 2229 . . . 4 (+g‘(ringLMod‘𝑅)) = (+g‘(ringLMod‘𝑅))
17 eqid 2229 . . . 4 ( ·𝑠 ‘(ringLMod‘𝑅)) = ( ·𝑠 ‘(ringLMod‘𝑅))
18 eqid 2229 . . . 4 (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅))
1913, 14, 15, 16, 17, 18islssm 14329 . . 3 (𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)) ↔ (𝐼 ⊆ (Base‘(ringLMod‘𝑅)) ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎𝐼𝑏𝐼 ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))
20 lidlvalg 14443 . . . . . 6 (𝑅 ∈ V → (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅)))
211, 20eqtrid 2274 . . . . 5 (𝑅 ∈ V → 𝑈 = (LSubSp‘(ringLMod‘𝑅)))
2221eleq2d 2299 . . . 4 (𝑅 ∈ V → (𝐼𝑈𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))))
23 rlmbasg 14427 . . . . . . 7 (𝑅 ∈ V → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
246, 23eqtrid 2274 . . . . . 6 (𝑅 ∈ V → 𝐵 = (Base‘(ringLMod‘𝑅)))
2524sseq2d 3254 . . . . 5 (𝑅 ∈ V → (𝐼𝐵𝐼 ⊆ (Base‘(ringLMod‘𝑅))))
26 rlmscabas 14432 . . . . . . 7 (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅))))
276, 26eqtrid 2274 . . . . . 6 (𝑅 ∈ V → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝑅))))
28 islidl.p . . . . . . . . . 10 + = (+g𝑅)
29 rlmplusgg 14428 . . . . . . . . . 10 (𝑅 ∈ V → (+g𝑅) = (+g‘(ringLMod‘𝑅)))
3028, 29eqtrid 2274 . . . . . . . . 9 (𝑅 ∈ V → + = (+g‘(ringLMod‘𝑅)))
31 islidl.t . . . . . . . . . . 11 · = (.r𝑅)
32 rlmvscag 14433 . . . . . . . . . . 11 (𝑅 ∈ V → (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)))
3331, 32eqtrid 2274 . . . . . . . . . 10 (𝑅 ∈ V → · = ( ·𝑠 ‘(ringLMod‘𝑅)))
3433oveqd 6024 . . . . . . . . 9 (𝑅 ∈ V → (𝑥 · 𝑎) = (𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎))
35 eqidd 2230 . . . . . . . . 9 (𝑅 ∈ V → 𝑏 = 𝑏)
3630, 34, 35oveq123d 6028 . . . . . . . 8 (𝑅 ∈ V → ((𝑥 · 𝑎) + 𝑏) = ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏))
3736eleq1d 2298 . . . . . . 7 (𝑅 ∈ V → (((𝑥 · 𝑎) + 𝑏) ∈ 𝐼 ↔ ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))
38372ralbidv 2554 . . . . . 6 (𝑅 ∈ V → (∀𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼 ↔ ∀𝑎𝐼𝑏𝐼 ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))
3927, 38raleqbidv 2744 . . . . 5 (𝑅 ∈ V → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼 ↔ ∀𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎𝐼𝑏𝐼 ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))
4025, 393anbi13d 1348 . . . 4 (𝑅 ∈ V → ((𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼) ↔ (𝐼 ⊆ (Base‘(ringLMod‘𝑅)) ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎𝐼𝑏𝐼 ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼)))
4122, 40bibi12d 235 . . 3 (𝑅 ∈ V → ((𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼)) ↔ (𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)) ↔ (𝐼 ⊆ (Base‘(ringLMod‘𝑅)) ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎𝐼𝑏𝐼 ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))))
4219, 41mpbiri 168 . 2 (𝑅 ∈ V → (𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼)))
432, 12, 42pm5.21nii 709 1 (𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
Colors of variables: wff set class
Syntax hints:  wb 105  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wral 2508  Vcvv 2799  wss 3197  cfv 5318  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  .rcmulr 13119  Scalarcsca 13121   ·𝑠 cvsca 13122  LSubSpclss 14324  ringLModcrglmod 14406  LIdealclidl 14439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-ip 13136  df-lssm 14325  df-sra 14407  df-rgmod 14408  df-lidl 14441
This theorem is referenced by:  rnglidlmcl  14452  dflidl2rng  14453
  Copyright terms: Public domain W3C validator