ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islidlm GIF version

Theorem islidlm 14035
Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
islidl.s 𝑈 = (LIdeal‘𝑅)
islidl.b 𝐵 = (Base‘𝑅)
islidl.p + = (+g𝑅)
islidl.t · = (.r𝑅)
Assertion
Ref Expression
islidlm (𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
Distinct variable groups:   𝑥,𝐵   𝐼,𝑎,𝑏,𝑗,𝑥   𝑅,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑗,𝑎,𝑏)   + (𝑥,𝑗,𝑎,𝑏)   𝑅(𝑗)   · (𝑥,𝑗,𝑎,𝑏)   𝑈(𝑥,𝑗,𝑎,𝑏)

Proof of Theorem islidlm
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 islidl.s . . 3 𝑈 = (LIdeal‘𝑅)
21lidlmex 14031 . 2 (𝐼𝑈𝑅 ∈ V)
3 eleq1w 2257 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝐼𝑘𝐼))
43cbvexv 1933 . . . . 5 (∃𝑗 𝑗𝐼 ↔ ∃𝑘 𝑘𝐼)
5 ssel 3177 . . . . . . 7 (𝐼𝐵 → (𝑘𝐼𝑘𝐵))
6 islidl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
76basmex 12737 . . . . . . 7 (𝑘𝐵𝑅 ∈ V)
85, 7syl6 33 . . . . . 6 (𝐼𝐵 → (𝑘𝐼𝑅 ∈ V))
98exlimdv 1833 . . . . 5 (𝐼𝐵 → (∃𝑘 𝑘𝐼𝑅 ∈ V))
104, 9biimtrid 152 . . . 4 (𝐼𝐵 → (∃𝑗 𝑗𝐼𝑅 ∈ V))
1110imp 124 . . 3 ((𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) → 𝑅 ∈ V)
12113adant3 1019 . 2 ((𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼) → 𝑅 ∈ V)
13 eqid 2196 . . . 4 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
14 eqid 2196 . . . 4 (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅)))
15 eqid 2196 . . . 4 (Base‘(ringLMod‘𝑅)) = (Base‘(ringLMod‘𝑅))
16 eqid 2196 . . . 4 (+g‘(ringLMod‘𝑅)) = (+g‘(ringLMod‘𝑅))
17 eqid 2196 . . . 4 ( ·𝑠 ‘(ringLMod‘𝑅)) = ( ·𝑠 ‘(ringLMod‘𝑅))
18 eqid 2196 . . . 4 (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅))
1913, 14, 15, 16, 17, 18islssm 13913 . . 3 (𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)) ↔ (𝐼 ⊆ (Base‘(ringLMod‘𝑅)) ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎𝐼𝑏𝐼 ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))
20 lidlvalg 14027 . . . . . 6 (𝑅 ∈ V → (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅)))
211, 20eqtrid 2241 . . . . 5 (𝑅 ∈ V → 𝑈 = (LSubSp‘(ringLMod‘𝑅)))
2221eleq2d 2266 . . . 4 (𝑅 ∈ V → (𝐼𝑈𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))))
23 rlmbasg 14011 . . . . . . 7 (𝑅 ∈ V → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
246, 23eqtrid 2241 . . . . . 6 (𝑅 ∈ V → 𝐵 = (Base‘(ringLMod‘𝑅)))
2524sseq2d 3213 . . . . 5 (𝑅 ∈ V → (𝐼𝐵𝐼 ⊆ (Base‘(ringLMod‘𝑅))))
26 rlmscabas 14016 . . . . . . 7 (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅))))
276, 26eqtrid 2241 . . . . . 6 (𝑅 ∈ V → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝑅))))
28 islidl.p . . . . . . . . . 10 + = (+g𝑅)
29 rlmplusgg 14012 . . . . . . . . . 10 (𝑅 ∈ V → (+g𝑅) = (+g‘(ringLMod‘𝑅)))
3028, 29eqtrid 2241 . . . . . . . . 9 (𝑅 ∈ V → + = (+g‘(ringLMod‘𝑅)))
31 islidl.t . . . . . . . . . . 11 · = (.r𝑅)
32 rlmvscag 14017 . . . . . . . . . . 11 (𝑅 ∈ V → (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)))
3331, 32eqtrid 2241 . . . . . . . . . 10 (𝑅 ∈ V → · = ( ·𝑠 ‘(ringLMod‘𝑅)))
3433oveqd 5939 . . . . . . . . 9 (𝑅 ∈ V → (𝑥 · 𝑎) = (𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎))
35 eqidd 2197 . . . . . . . . 9 (𝑅 ∈ V → 𝑏 = 𝑏)
3630, 34, 35oveq123d 5943 . . . . . . . 8 (𝑅 ∈ V → ((𝑥 · 𝑎) + 𝑏) = ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏))
3736eleq1d 2265 . . . . . . 7 (𝑅 ∈ V → (((𝑥 · 𝑎) + 𝑏) ∈ 𝐼 ↔ ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))
38372ralbidv 2521 . . . . . 6 (𝑅 ∈ V → (∀𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼 ↔ ∀𝑎𝐼𝑏𝐼 ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))
3927, 38raleqbidv 2709 . . . . 5 (𝑅 ∈ V → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼 ↔ ∀𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎𝐼𝑏𝐼 ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))
4025, 393anbi13d 1325 . . . 4 (𝑅 ∈ V → ((𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼) ↔ (𝐼 ⊆ (Base‘(ringLMod‘𝑅)) ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎𝐼𝑏𝐼 ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼)))
4122, 40bibi12d 235 . . 3 (𝑅 ∈ V → ((𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼)) ↔ (𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)) ↔ (𝐼 ⊆ (Base‘(ringLMod‘𝑅)) ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))∀𝑎𝐼𝑏𝐼 ((𝑥( ·𝑠 ‘(ringLMod‘𝑅))𝑎)(+g‘(ringLMod‘𝑅))𝑏) ∈ 𝐼))))
4219, 41mpbiri 168 . 2 (𝑅 ∈ V → (𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼)))
432, 12, 42pm5.21nii 705 1 (𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
Colors of variables: wff set class
Syntax hints:  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  Vcvv 2763  wss 3157  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  .rcmulr 12756  Scalarcsca 12758   ·𝑠 cvsca 12759  LSubSpclss 13908  ringLModcrglmod 13990  LIdealclidl 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-ip 12773  df-lssm 13909  df-sra 13991  df-rgmod 13992  df-lidl 14025
This theorem is referenced by:  rnglidlmcl  14036  dflidl2rng  14037
  Copyright terms: Public domain W3C validator