ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modaddmodlo Unicode version

Theorem modaddmodlo 9944
Description: The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
modaddmodlo  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  ( B  +  ( A  mod  M ) )  =  ( ( B  +  A )  mod  M
) ) )

Proof of Theorem modaddmodlo
StepHypRef Expression
1 elfzoelz 9707 . . . . . . 7  |-  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  B  e.  ZZ )
21adantl 272 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  B  e.  ZZ )
3 zq 9210 . . . . . 6  |-  ( B  e.  ZZ  ->  B  e.  QQ )
42, 3syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  B  e.  QQ )
5 zmodcl 9900 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( A  mod  M
)  e.  NN0 )
65adantr 271 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( A  mod  M
)  e.  NN0 )
76nn0zd 8965 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( A  mod  M
)  e.  ZZ )
8 zq 9210 . . . . . 6  |-  ( ( A  mod  M )  e.  ZZ  ->  ( A  mod  M )  e.  QQ )
97, 8syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( A  mod  M
)  e.  QQ )
10 qaddcl 9219 . . . . 5  |-  ( ( B  e.  QQ  /\  ( A  mod  M )  e.  QQ )  -> 
( B  +  ( A  mod  M ) )  e.  QQ )
114, 9, 10syl2anc 404 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( B  +  ( A  mod  M ) )  e.  QQ )
12 simplr 498 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  M  e.  NN )
13 nnq 9217 . . . . 5  |-  ( M  e.  NN  ->  M  e.  QQ )
1412, 13syl 14 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  M  e.  QQ )
152zred 8967 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  B  e.  RR )
166nn0red 8825 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( A  mod  M
)  e.  RR )
17 elfzole1 9715 . . . . . 6  |-  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  0  <_  B )
1817adantl 272 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
0  <_  B )
196nn0ge0d 8827 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
0  <_  ( A  mod  M ) )
2015, 16, 18, 19addge0d 8096 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
0  <_  ( B  +  ( A  mod  M ) ) )
21 elfzolt2 9716 . . . . . 6  |-  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  B  <  ( M  -  ( A  mod  M ) ) )
2221adantl 272 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  B  <  ( M  -  ( A  mod  M ) ) )
2312nnred 8533 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  M  e.  RR )
2415, 16, 23ltaddsubd 8119 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( ( B  +  ( A  mod  M ) )  <  M  <->  B  <  ( M  -  ( A  mod  M ) ) ) )
2522, 24mpbird 166 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( B  +  ( A  mod  M ) )  <  M )
26 modqid 9905 . . . 4  |-  ( ( ( ( B  +  ( A  mod  M ) )  e.  QQ  /\  M  e.  QQ )  /\  ( 0  <_  ( B  +  ( A  mod  M ) )  /\  ( B  +  ( A  mod  M ) )  <  M ) )  ->  ( ( B  +  ( A  mod  M ) )  mod  M
)  =  ( B  +  ( A  mod  M ) ) )
2711, 14, 20, 25, 26syl22anc 1182 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( ( B  +  ( A  mod  M ) )  mod  M )  =  ( B  +  ( A  mod  M ) ) )
28 zq 9210 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  QQ )
2928ad2antrr 473 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  A  e.  QQ )
3012nngt0d 8564 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
0  <  M )
31 modqadd2mod 9930 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  A )  mod 
M ) )
3229, 4, 14, 30, 31syl22anc 1182 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( ( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  A )  mod 
M ) )
3327, 32eqtr3d 2129 . 2  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( B  +  ( A  mod  M ) )  =  ( ( B  +  A )  mod  M ) )
3433ex 114 1  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  ( B  +  ( A  mod  M ) )  =  ( ( B  +  A )  mod  M
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1296    e. wcel 1445   class class class wbr 3867  (class class class)co 5690   0cc0 7447    + caddc 7450    < clt 7619    <_ cle 7620    - cmin 7750   NNcn 8520   NN0cn0 8771   ZZcz 8848   QQcq 9203  ..^cfzo 9702    mod cmo 9878
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-po 4147  df-iso 4148  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119  df-q 9204  df-rp 9234  df-fz 9574  df-fzo 9703  df-fl 9826  df-mod 9879
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator