ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modaddmodlo Unicode version

Theorem modaddmodlo 10323
Description: The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
modaddmodlo  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  ( B  +  ( A  mod  M ) )  =  ( ( B  +  A )  mod  M
) ) )

Proof of Theorem modaddmodlo
StepHypRef Expression
1 elfzoelz 10082 . . . . . . 7  |-  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  B  e.  ZZ )
21adantl 275 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  B  e.  ZZ )
3 zq 9564 . . . . . 6  |-  ( B  e.  ZZ  ->  B  e.  QQ )
42, 3syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  B  e.  QQ )
5 zmodcl 10279 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( A  mod  M
)  e.  NN0 )
65adantr 274 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( A  mod  M
)  e.  NN0 )
76nn0zd 9311 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( A  mod  M
)  e.  ZZ )
8 zq 9564 . . . . . 6  |-  ( ( A  mod  M )  e.  ZZ  ->  ( A  mod  M )  e.  QQ )
97, 8syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( A  mod  M
)  e.  QQ )
10 qaddcl 9573 . . . . 5  |-  ( ( B  e.  QQ  /\  ( A  mod  M )  e.  QQ )  -> 
( B  +  ( A  mod  M ) )  e.  QQ )
114, 9, 10syl2anc 409 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( B  +  ( A  mod  M ) )  e.  QQ )
12 simplr 520 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  M  e.  NN )
13 nnq 9571 . . . . 5  |-  ( M  e.  NN  ->  M  e.  QQ )
1412, 13syl 14 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  M  e.  QQ )
152zred 9313 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  B  e.  RR )
166nn0red 9168 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( A  mod  M
)  e.  RR )
17 elfzole1 10090 . . . . . 6  |-  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  0  <_  B )
1817adantl 275 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
0  <_  B )
196nn0ge0d 9170 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
0  <_  ( A  mod  M ) )
2015, 16, 18, 19addge0d 8420 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
0  <_  ( B  +  ( A  mod  M ) ) )
21 elfzolt2 10091 . . . . . 6  |-  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  B  <  ( M  -  ( A  mod  M ) ) )
2221adantl 275 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  B  <  ( M  -  ( A  mod  M ) ) )
2312nnred 8870 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  M  e.  RR )
2415, 16, 23ltaddsubd 8443 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( ( B  +  ( A  mod  M ) )  <  M  <->  B  <  ( M  -  ( A  mod  M ) ) ) )
2522, 24mpbird 166 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( B  +  ( A  mod  M ) )  <  M )
26 modqid 10284 . . . 4  |-  ( ( ( ( B  +  ( A  mod  M ) )  e.  QQ  /\  M  e.  QQ )  /\  ( 0  <_  ( B  +  ( A  mod  M ) )  /\  ( B  +  ( A  mod  M ) )  <  M ) )  ->  ( ( B  +  ( A  mod  M ) )  mod  M
)  =  ( B  +  ( A  mod  M ) ) )
2711, 14, 20, 25, 26syl22anc 1229 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( ( B  +  ( A  mod  M ) )  mod  M )  =  ( B  +  ( A  mod  M ) ) )
28 zq 9564 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  QQ )
2928ad2antrr 480 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  A  e.  QQ )
3012nngt0d 8901 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
0  <  M )
31 modqadd2mod 10309 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  A )  mod 
M ) )
3229, 4, 14, 30, 31syl22anc 1229 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( ( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  A )  mod 
M ) )
3327, 32eqtr3d 2200 . 2  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( B  +  ( A  mod  M ) )  =  ( ( B  +  A )  mod  M ) )
3433ex 114 1  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  ( B  +  ( A  mod  M ) )  =  ( ( B  +  A )  mod  M
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   0cc0 7753    + caddc 7756    < clt 7933    <_ cle 7934    - cmin 8069   NNcn 8857   NN0cn0 9114   ZZcz 9191   QQcq 9557  ..^cfzo 10077    mod cmo 10257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator