ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modaddmodlo Unicode version

Theorem modaddmodlo 10462
Description: The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
modaddmodlo  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  ( B  +  ( A  mod  M ) )  =  ( ( B  +  A )  mod  M
) ) )

Proof of Theorem modaddmodlo
StepHypRef Expression
1 elfzoelz 10216 . . . . . . 7  |-  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  B  e.  ZZ )
21adantl 277 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  B  e.  ZZ )
3 zq 9694 . . . . . 6  |-  ( B  e.  ZZ  ->  B  e.  QQ )
42, 3syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  B  e.  QQ )
5 zmodcl 10418 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( A  mod  M
)  e.  NN0 )
65adantr 276 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( A  mod  M
)  e.  NN0 )
76nn0zd 9440 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( A  mod  M
)  e.  ZZ )
8 zq 9694 . . . . . 6  |-  ( ( A  mod  M )  e.  ZZ  ->  ( A  mod  M )  e.  QQ )
97, 8syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( A  mod  M
)  e.  QQ )
10 qaddcl 9703 . . . . 5  |-  ( ( B  e.  QQ  /\  ( A  mod  M )  e.  QQ )  -> 
( B  +  ( A  mod  M ) )  e.  QQ )
114, 9, 10syl2anc 411 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( B  +  ( A  mod  M ) )  e.  QQ )
12 simplr 528 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  M  e.  NN )
13 nnq 9701 . . . . 5  |-  ( M  e.  NN  ->  M  e.  QQ )
1412, 13syl 14 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  M  e.  QQ )
152zred 9442 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  B  e.  RR )
166nn0red 9297 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( A  mod  M
)  e.  RR )
17 elfzole1 10225 . . . . . 6  |-  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  0  <_  B )
1817adantl 277 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
0  <_  B )
196nn0ge0d 9299 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
0  <_  ( A  mod  M ) )
2015, 16, 18, 19addge0d 8543 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
0  <_  ( B  +  ( A  mod  M ) ) )
21 elfzolt2 10226 . . . . . 6  |-  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  B  <  ( M  -  ( A  mod  M ) ) )
2221adantl 277 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  B  <  ( M  -  ( A  mod  M ) ) )
2312nnred 8997 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  M  e.  RR )
2415, 16, 23ltaddsubd 8566 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( ( B  +  ( A  mod  M ) )  <  M  <->  B  <  ( M  -  ( A  mod  M ) ) ) )
2522, 24mpbird 167 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( B  +  ( A  mod  M ) )  <  M )
26 modqid 10423 . . . 4  |-  ( ( ( ( B  +  ( A  mod  M ) )  e.  QQ  /\  M  e.  QQ )  /\  ( 0  <_  ( B  +  ( A  mod  M ) )  /\  ( B  +  ( A  mod  M ) )  <  M ) )  ->  ( ( B  +  ( A  mod  M ) )  mod  M
)  =  ( B  +  ( A  mod  M ) ) )
2711, 14, 20, 25, 26syl22anc 1250 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( ( B  +  ( A  mod  M ) )  mod  M )  =  ( B  +  ( A  mod  M ) ) )
28 zq 9694 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  QQ )
2928ad2antrr 488 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  ->  A  e.  QQ )
3012nngt0d 9028 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
0  <  M )
31 modqadd2mod 10448 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  A )  mod 
M ) )
3229, 4, 14, 30, 31syl22anc 1250 . . 3  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( ( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  A )  mod 
M ) )
3327, 32eqtr3d 2228 . 2  |-  ( ( ( A  e.  ZZ  /\  M  e.  NN )  /\  B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) ) )  -> 
( B  +  ( A  mod  M ) )  =  ( ( B  +  A )  mod  M ) )
3433ex 115 1  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  ( B  +  ( A  mod  M ) )  =  ( ( B  +  A )  mod  M
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   class class class wbr 4030  (class class class)co 5919   0cc0 7874    + caddc 7877    < clt 8056    <_ cle 8057    - cmin 8192   NNcn 8984   NN0cn0 9243   ZZcz 9320   QQcq 9687  ..^cfzo 10211    mod cmo 10396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator