| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zmodcl | Unicode version | ||
| Description: Closure law for the modulo operation restricted to integers. (Contributed by NM, 27-Nov-2008.) |
| Ref | Expression |
|---|---|
| zmodcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zq 9719 |
. . . . 5
| |
| 2 | 1 | adantr 276 |
. . . 4
|
| 3 | nnq 9726 |
. . . . 5
| |
| 4 | 3 | adantl 277 |
. . . 4
|
| 5 | nngt0 9034 |
. . . . 5
| |
| 6 | 5 | adantl 277 |
. . . 4
|
| 7 | modqval 10435 |
. . . 4
| |
| 8 | 2, 4, 6, 7 | syl3anc 1249 |
. . 3
|
| 9 | nnz 9364 |
. . . . . 6
| |
| 10 | 9 | adantl 277 |
. . . . 5
|
| 11 | znq 9717 |
. . . . . 6
| |
| 12 | 11 | flqcld 10386 |
. . . . 5
|
| 13 | 10, 12 | zmulcld 9473 |
. . . 4
|
| 14 | zsubcl 9386 |
. . . 4
| |
| 15 | 13, 14 | syldan 282 |
. . 3
|
| 16 | 8, 15 | eqeltrd 2273 |
. 2
|
| 17 | modqge0 10443 |
. . 3
| |
| 18 | 2, 4, 6, 17 | syl3anc 1249 |
. 2
|
| 19 | elnn0z 9358 |
. 2
| |
| 20 | 16, 18, 19 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-n0 9269 df-z 9346 df-q 9713 df-rp 9748 df-fl 10379 df-mod 10434 |
| This theorem is referenced by: zmodcld 10456 zmodfz 10457 modaddmodup 10498 modaddmodlo 10499 modfsummodlemstep 11641 divalglemnn 12102 divalgmod 12111 modgcd 12185 eucalgf 12250 eucalginv 12251 modprmn0modprm0 12452 fldivp1 12544 lgsmod 15375 lgsdir2lem4 15380 lgsdir2lem5 15381 lgsne0 15387 |
| Copyright terms: Public domain | W3C validator |