Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnnninfen Unicode version

Theorem nnnninfen 16346
Description: Equinumerosity of the natural numbers and ℕ is equivalent to the Limited Principle of Omniscience (LPO). Remark in Section 1.1 of [Pradic2025], p. 2. (Contributed by Jim Kingdon, 8-Jul-2025.)
Assertion
Ref Expression
nnnninfen  |-  ( om 
~~  <->  om  e. Omni )

Proof of Theorem nnnninfen
Dummy variables  i  j  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfomni 16344 . . 3  |-  e. Omni
2 enomni 7302 . . 3  |-  ( om 
~~  ->  ( om  e. Omni  <->  e. Omni ) )
31, 2mpbiri 168 . 2  |-  ( om 
~~  ->  om  e. Omni )
4 lpowlpo 7331 . . . . . 6  |-  ( om  e. Omni  ->  om  e. WOmni )
5 nninfwlpo 7344 . . . . . 6  |-  ( A. x  e.  A. y  e. DECID  x  =  y  <->  om  e. WOmni )
64, 5sylibr 134 . . . . 5  |-  ( om  e. Omni  ->  A. x  e.  A. y  e. DECID  x  =  y )
7 nninfct 12557 . . . . . 6  |-  ( om  e. Omni  ->  E. z  z : om -onto-> ( 1o ) )
8 infnninf 7287 . . . . . . 7  |-  ( i  e.  om  |->  1o )  e.
9 elex2 2816 . . . . . . 7  |-  ( ( i  e.  om  |->  1o )  e.  ->  E. j  j  e. )
10 ctm 7272 . . . . . . 7  |-  ( E. j  j  e.  ->  ( E. z 
z : om -onto-> ( 1o )  <->  E. z  z : om -onto-> ) )
118, 9, 10mp2b 8 . . . . . 6  |-  ( E. z  z : om -onto->
( 1o )  <->  E. z  z : om -onto-> )
127, 11sylib 122 . . . . 5  |-  ( om  e. Omni  ->  E. z  z : om -onto-> )
13 nninfinf 10660 . . . . . 6  |-  om  ~<_
1413a1i 9 . . . . 5  |-  ( om  e. Omni  ->  om  ~<_ )
15 ctinf 12996 . . . . 5  |-  (  ~~  NN  <->  ( A. x  e.  A. y  e. DECID  x  =  y  /\  E. z  z : om -onto->  /\  om  ~<_ ) )
166, 12, 14, 15syl3anbrc 1205 . . . 4  |-  ( om  e. Omni  ->  ~~  NN )
17 nnenom 10651 . . . 4  |-  NN  ~~  om
18 entr 6934 . . . 4  |-  ( (  ~~  NN  /\  NN  ~~  om )  ->  ~~ 
om )
1916, 17, 18sylancl 413 . . 3  |-  ( om  e. Omni  ->  ~~ 
om )
2019ensymd 6933 . 2  |-  ( om  e. Omni  ->  om  ~~ )
213, 20impbii 126 1  |-  ( om 
~~  <->  om  e. Omni )
Colors of variables: wff set class
Syntax hints:    <-> wb 105  DECID wdc 839   E.wex 1538    e. wcel 2200   A.wral 2508   class class class wbr 4082    |-> cmpt 4144   omcom 4681   -onto->wfo 5315   1oc1o 6553    ~~ cen 6883    ~<_ cdom 6884   ⊔ cdju 7200  ℕxnninf 7282  Omnicomni 7297  WOmnicwomni 7326   NNcn 9106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-2o 6561  df-er 6678  df-map 6795  df-pm 6796  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-inf 7148  df-dju 7201  df-inl 7210  df-inr 7211  df-case 7247  df-nninf 7283  df-omni 7298  df-markov 7315  df-womni 7327  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-xnn0 9429  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-seqfrec 10665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator