Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnnninfen Unicode version

Theorem nnnninfen 16160
Description: Equinumerosity of the natural numbers and ℕ is equivalent to the Limited Principle of Omniscience (LPO). Remark in Section 1.1 of [Pradic2025], p. 2. (Contributed by Jim Kingdon, 8-Jul-2025.)
Assertion
Ref Expression
nnnninfen  |-  ( om 
~~  <->  om  e. Omni )

Proof of Theorem nnnninfen
Dummy variables  i  j  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfomni 16158 . . 3  |-  e. Omni
2 enomni 7267 . . 3  |-  ( om 
~~  ->  ( om  e. Omni  <->  e. Omni ) )
31, 2mpbiri 168 . 2  |-  ( om 
~~  ->  om  e. Omni )
4 lpowlpo 7296 . . . . . 6  |-  ( om  e. Omni  ->  om  e. WOmni )
5 nninfwlpo 7309 . . . . . 6  |-  ( A. x  e.  A. y  e. DECID  x  =  y  <->  om  e. WOmni )
64, 5sylibr 134 . . . . 5  |-  ( om  e. Omni  ->  A. x  e.  A. y  e. DECID  x  =  y )
7 nninfct 12477 . . . . . 6  |-  ( om  e. Omni  ->  E. z  z : om -onto-> ( 1o ) )
8 infnninf 7252 . . . . . . 7  |-  ( i  e.  om  |->  1o )  e.
9 elex2 2793 . . . . . . 7  |-  ( ( i  e.  om  |->  1o )  e.  ->  E. j  j  e. )
10 ctm 7237 . . . . . . 7  |-  ( E. j  j  e.  ->  ( E. z 
z : om -onto-> ( 1o )  <->  E. z  z : om -onto-> ) )
118, 9, 10mp2b 8 . . . . . 6  |-  ( E. z  z : om -onto->
( 1o )  <->  E. z  z : om -onto-> )
127, 11sylib 122 . . . . 5  |-  ( om  e. Omni  ->  E. z  z : om -onto-> )
13 nninfinf 10625 . . . . . 6  |-  om  ~<_
1413a1i 9 . . . . 5  |-  ( om  e. Omni  ->  om  ~<_ )
15 ctinf 12916 . . . . 5  |-  (  ~~  NN  <->  ( A. x  e.  A. y  e. DECID  x  =  y  /\  E. z  z : om -onto->  /\  om  ~<_ ) )
166, 12, 14, 15syl3anbrc 1184 . . . 4  |-  ( om  e. Omni  ->  ~~  NN )
17 nnenom 10616 . . . 4  |-  NN  ~~  om
18 entr 6899 . . . 4  |-  ( (  ~~  NN  /\  NN  ~~  om )  ->  ~~ 
om )
1916, 17, 18sylancl 413 . . 3  |-  ( om  e. Omni  ->  ~~ 
om )
2019ensymd 6898 . 2  |-  ( om  e. Omni  ->  om  ~~ )
213, 20impbii 126 1  |-  ( om 
~~  <->  om  e. Omni )
Colors of variables: wff set class
Syntax hints:    <-> wb 105  DECID wdc 836   E.wex 1516    e. wcel 2178   A.wral 2486   class class class wbr 4059    |-> cmpt 4121   omcom 4656   -onto->wfo 5288   1oc1o 6518    ~~ cen 6848    ~<_ cdom 6849   ⊔ cdju 7165  ℕxnninf 7247  Omnicomni 7262  WOmnicwomni 7291   NNcn 9071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-2o 6526  df-er 6643  df-map 6760  df-pm 6761  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-inf 7113  df-dju 7166  df-inl 7175  df-inr 7176  df-case 7212  df-nninf 7248  df-omni 7263  df-markov 7280  df-womni 7292  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-xnn0 9394  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-seqfrec 10630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator