Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnnninfen Unicode version

Theorem nnnninfen 15511
Description: Equinumerosity of the natural numbers and ℕ is equivalent to the Limited Principle of Omniscience (LPO). Remark in Section 1.1 of [Pradic2025], p. 2. (Contributed by Jim Kingdon, 8-Jul-2025.)
Assertion
Ref Expression
nnnninfen  |-  ( om 
~~  <->  om  e. Omni )

Proof of Theorem nnnninfen
Dummy variables  i  j  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfomni 15509 . . 3  |-  e. Omni
2 enomni 7198 . . 3  |-  ( om 
~~  ->  ( om  e. Omni  <->  e. Omni ) )
31, 2mpbiri 168 . 2  |-  ( om 
~~  ->  om  e. Omni )
4 lpowlpo 7227 . . . . . 6  |-  ( om  e. Omni  ->  om  e. WOmni )
5 nninfwlpo 7238 . . . . . 6  |-  ( A. x  e.  A. y  e. DECID  x  =  y  <->  om  e. WOmni )
64, 5sylibr 134 . . . . 5  |-  ( om  e. Omni  ->  A. x  e.  A. y  e. DECID  x  =  y )
7 nninfct 12178 . . . . . 6  |-  ( om  e. Omni  ->  E. z  z : om -onto-> ( 1o ) )
8 infnninf 7183 . . . . . . 7  |-  ( i  e.  om  |->  1o )  e.
9 elex2 2776 . . . . . . 7  |-  ( ( i  e.  om  |->  1o )  e.  ->  E. j  j  e. )
10 ctm 7168 . . . . . . 7  |-  ( E. j  j  e.  ->  ( E. z 
z : om -onto-> ( 1o )  <->  E. z  z : om -onto-> ) )
118, 9, 10mp2b 8 . . . . . 6  |-  ( E. z  z : om -onto->
( 1o )  <->  E. z  z : om -onto-> )
127, 11sylib 122 . . . . 5  |-  ( om  e. Omni  ->  E. z  z : om -onto-> )
13 nninfinf 10514 . . . . . 6  |-  om  ~<_
1413a1i 9 . . . . 5  |-  ( om  e. Omni  ->  om  ~<_ )
15 ctinf 12587 . . . . 5  |-  (  ~~  NN  <->  ( A. x  e.  A. y  e. DECID  x  =  y  /\  E. z  z : om -onto->  /\  om  ~<_ ) )
166, 12, 14, 15syl3anbrc 1183 . . . 4  |-  ( om  e. Omni  ->  ~~  NN )
17 nnenom 10505 . . . 4  |-  NN  ~~  om
18 entr 6838 . . . 4  |-  ( (  ~~  NN  /\  NN  ~~  om )  ->  ~~ 
om )
1916, 17, 18sylancl 413 . . 3  |-  ( om  e. Omni  ->  ~~ 
om )
2019ensymd 6837 . 2  |-  ( om  e. Omni  ->  om  ~~ )
213, 20impbii 126 1  |-  ( om 
~~  <->  om  e. Omni )
Colors of variables: wff set class
Syntax hints:    <-> wb 105  DECID wdc 835   E.wex 1503    e. wcel 2164   A.wral 2472   class class class wbr 4029    |-> cmpt 4090   omcom 4622   -onto->wfo 5252   1oc1o 6462    ~~ cen 6792    ~<_ cdom 6793   ⊔ cdju 7096  ℕxnninf 7178  Omnicomni 7193  WOmnicwomni 7222   NNcn 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-map 6704  df-pm 6705  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-dju 7097  df-inl 7106  df-inr 7107  df-case 7143  df-nninf 7179  df-omni 7194  df-markov 7211  df-womni 7223  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-xnn0 9304  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator