ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgs Unicode version

Theorem 2lgs 15345
Description: The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 
P iff  P  ==  pm 1 (mod  8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of  ( N  /L 2 ) (lgs2 15258) to some degree, by demanding that reciprocity extend to the case  Q  =  2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.)
Assertion
Ref Expression
2lgs  |-  ( P  e.  Prime  ->  ( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )

Proof of Theorem 2lgs
Dummy variables  i  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prm2orodd 12294 . 2  |-  ( P  e.  Prime  ->  ( P  =  2  \/  -.  2  ||  P ) )
2 2lgslem4 15344 . . . . . 6  |-  ( ( 2  /L 2 )  =  1  <->  (
2  mod  8 )  e.  { 1 ,  7 } )
32a1i 9 . . . . 5  |-  ( P  =  2  ->  (
( 2  /L 2 )  =  1  <-> 
( 2  mod  8
)  e.  { 1 ,  7 } ) )
4 oveq2 5930 . . . . . 6  |-  ( P  =  2  ->  (
2  /L P )  =  ( 2  /L 2 ) )
54eqeq1d 2205 . . . . 5  |-  ( P  =  2  ->  (
( 2  /L
P )  =  1  <-> 
( 2  /L 2 )  =  1 ) )
6 oveq1 5929 . . . . . 6  |-  ( P  =  2  ->  ( P  mod  8 )  =  ( 2  mod  8
) )
76eleq1d 2265 . . . . 5  |-  ( P  =  2  ->  (
( P  mod  8
)  e.  { 1 ,  7 }  <->  ( 2  mod  8 )  e. 
{ 1 ,  7 } ) )
83, 5, 73bitr4d 220 . . . 4  |-  ( P  =  2  ->  (
( 2  /L
P )  =  1  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
98a1d 22 . . 3  |-  ( P  =  2  ->  ( P  e.  Prime  ->  (
( 2  /L
P )  =  1  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) ) )
10 2prm 12295 . . . . . . . . . 10  |-  2  e.  Prime
11 prmnn 12278 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
12 dvdsprime 12290 . . . . . . . . . 10  |-  ( ( 2  e.  Prime  /\  P  e.  NN )  ->  ( P  ||  2  <->  ( P  =  2  \/  P  =  1 ) ) )
1310, 11, 12sylancr 414 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( P 
||  2  <->  ( P  =  2  \/  P  =  1 ) ) )
14 z2even 12079 . . . . . . . . . . . . 13  |-  2  ||  2
15 breq2 4037 . . . . . . . . . . . . 13  |-  ( P  =  2  ->  (
2  ||  P  <->  2  ||  2 ) )
1614, 15mpbiri 168 . . . . . . . . . . . 12  |-  ( P  =  2  ->  2  ||  P )
1716a1d 22 . . . . . . . . . . 11  |-  ( P  =  2  ->  ( P  e.  Prime  ->  2  ||  P ) )
18 eleq1 2259 . . . . . . . . . . . 12  |-  ( P  =  1  ->  ( P  e.  Prime  <->  1  e.  Prime ) )
19 1nprm 12282 . . . . . . . . . . . . 13  |-  -.  1  e.  Prime
2019pm2.21i 647 . . . . . . . . . . . 12  |-  ( 1  e.  Prime  ->  2  ||  P )
2118, 20biimtrdi 163 . . . . . . . . . . 11  |-  ( P  =  1  ->  ( P  e.  Prime  ->  2  ||  P ) )
2217, 21jaoi 717 . . . . . . . . . 10  |-  ( ( P  =  2  \/  P  =  1 )  ->  ( P  e. 
Prime  ->  2  ||  P
) )
2322com12 30 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( ( P  =  2  \/  P  =  1 )  ->  2  ||  P
) )
2413, 23sylbid 150 . . . . . . . 8  |-  ( P  e.  Prime  ->  ( P 
||  2  ->  2  ||  P ) )
2524con3dimp 636 . . . . . . 7  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  -.  P  ||  2 )
26 2z 9354 . . . . . . 7  |-  2  e.  ZZ
2725, 26jctil 312 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( 2  e.  ZZ  /\ 
-.  P  ||  2
) )
28 2lgslem1 15332 . . . . . . 7  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( `  { x  e.  ZZ  |  E. i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2 )  < 
( x  mod  P
) ) } )  =  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) )
2928eqcomd 2202 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )
30 nnoddn2prmb 12431 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  -.  2  ||  P ) )
3130biimpri 133 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  P  e.  ( Prime  \  { 2 } ) )
32313ad2ant1 1020 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  ( 2  e.  ZZ  /\  -.  P  ||  2 )  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )  ->  P  e.  ( Prime  \  { 2 } ) )
33 eqid 2196 . . . . . . . 8  |-  ( ( P  -  1 )  /  2 )  =  ( ( P  - 
1 )  /  2
)
34 eqid 2196 . . . . . . . 8  |-  ( y  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  if ( ( y  x.  2 )  <  ( P  /  2 ) ,  ( y  x.  2 ) ,  ( P  -  ( y  x.  2 ) ) ) )  =  ( y  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  if ( ( y  x.  2 )  <  ( P  /  2 ) ,  ( y  x.  2 ) ,  ( P  -  ( y  x.  2 ) ) ) )
35 eqid 2196 . . . . . . . 8  |-  ( |_
`  ( P  / 
4 ) )  =  ( |_ `  ( P  /  4 ) )
36 eqid 2196 . . . . . . . 8  |-  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) )  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
3732, 33, 34, 35, 36gausslemma2d 15310 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  ( 2  e.  ZZ  /\  -.  P  ||  2 )  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) ) ) )
3837eqeq1d 2205 . . . . . 6  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  ( 2  e.  ZZ  /\  -.  P  ||  2 )  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )  ->  (
( 2  /L
P )  =  1  <-> 
( -u 1 ^ (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) ) )  =  1 ) )
3927, 29, 38mpd3an23 1350 . . . . 5  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( 2  /L P )  =  1  <->  ( -u 1 ^ ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) )  =  1 ) )
40362lgslem2 15333 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  e.  ZZ )
41 m1exp1 12066 . . . . . 6  |-  ( ( ( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  e.  ZZ  ->  (
( -u 1 ^ (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) ) )  =  1  <->  2 
||  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) ) )
4240, 41syl 14 . . . . 5  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( -u 1 ^ ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) )  =  1  <->  2  ||  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) ) ) )
43 2nn 9152 . . . . . . 7  |-  2  e.  NN
44 dvdsval3 11956 . . . . . . 7  |-  ( ( 2  e.  NN  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  e.  ZZ )  -> 
( 2  ||  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  <-> 
( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )  mod  2 )  =  0 ) )
4543, 40, 44sylancr 414 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( 2  ||  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  <-> 
( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )  mod  2 )  =  0 ) )
46362lgslem3 15342 . . . . . . . 8  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) )  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) )
4711, 46sylan 283 . . . . . . 7  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )  mod  2 )  =  if ( ( P  mod  8 )  e.  { 1 ,  7 } ,  0 ,  1 ) )
4847eqeq1d 2205 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) )  mod  2 )  =  0  <-> 
if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 )  =  0 ) )
49 prmz 12279 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  ZZ )
50 8nn 9158 . . . . . . . . . . . . . . . 16  |-  8  e.  NN
5150a1i 9 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  8  e.  NN )
5249, 51zmodcld 10437 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  ( P  mod  8 )  e. 
NN0 )
5352nn0zd 9446 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( P  mod  8 )  e.  ZZ )
54 1z 9352 . . . . . . . . . . . . 13  |-  1  e.  ZZ
55 zdceq 9401 . . . . . . . . . . . . 13  |-  ( ( ( P  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( P  mod  8 )  =  1 )
5653, 54, 55sylancl 413 . . . . . . . . . . . 12  |-  ( P  e.  Prime  -> DECID  ( P  mod  8
)  =  1 )
57 7nn 9157 . . . . . . . . . . . . . 14  |-  7  e.  NN
5857nnzi 9347 . . . . . . . . . . . . 13  |-  7  e.  ZZ
59 zdceq 9401 . . . . . . . . . . . . 13  |-  ( ( ( P  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( P  mod  8 )  =  7 )
6053, 58, 59sylancl 413 . . . . . . . . . . . 12  |-  ( P  e.  Prime  -> DECID  ( P  mod  8
)  =  7 )
61 dcor 937 . . . . . . . . . . . 12  |-  (DECID  ( P  mod  8 )  =  1  ->  (DECID  ( P  mod  8 )  =  7  -> DECID 
( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
6256, 60, 61sylc 62 . . . . . . . . . . 11  |-  ( P  e.  Prime  -> DECID  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) )
63 elprg 3642 . . . . . . . . . . . . 13  |-  ( ( P  mod  8 )  e.  NN0  ->  ( ( P  mod  8 )  e.  { 1 ,  7 }  <->  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
6452, 63syl 14 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  ( ( P  mod  8 )  e.  { 1 ,  7 }  <->  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
6564dcbid 839 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  (DECID  ( P  mod  8 )  e. 
{ 1 ,  7 }  <-> DECID  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
6662, 65mpbird 167 . . . . . . . . . 10  |-  ( P  e.  Prime  -> DECID  ( P  mod  8
)  e.  { 1 ,  7 } )
67 exmiddc 837 . . . . . . . . . 10  |-  (DECID  ( P  mod  8 )  e. 
{ 1 ,  7 }  ->  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  \/  -.  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
6866, 67syl 14 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( ( P  mod  8 )  e.  { 1 ,  7 }  \/  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )
69 iffalse 3569 . . . . . . . . . . . 12  |-  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  1 )
7069eqeq1d 2205 . . . . . . . . . . 11  |-  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 )  =  0  <->  1  =  0 ) )
71 1ne0 9058 . . . . . . . . . . . 12  |-  1  =/=  0
72 eqneqall 2377 . . . . . . . . . . . 12  |-  ( 1  =  0  ->  (
1  =/=  0  -> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
7371, 72mpi 15 . . . . . . . . . . 11  |-  ( 1  =  0  ->  ( P  mod  8 )  e. 
{ 1 ,  7 } )
7470, 73biimtrdi 163 . . . . . . . . . 10  |-  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 )  =  0  ->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
7574jao1i 797 . . . . . . . . 9  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  \/  -.  ( P  mod  8
)  e.  { 1 ,  7 } )  ->  ( if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 )  =  0  ->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
7668, 75syl 14 . . . . . . . 8  |-  ( P  e.  Prime  ->  ( if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0  -> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
77 iftrue 3566 . . . . . . . 8  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0 )
7876, 77impbid1 142 . . . . . . 7  |-  ( P  e.  Prime  ->  ( if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
7978adantr 276 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( if ( ( P  mod  8 )  e.  { 1 ,  7 } ,  0 ,  1 )  =  0  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
8045, 48, 793bitrd 214 . . . . 5  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( 2  ||  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
8139, 42, 803bitrd 214 . . . 4  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
8281expcom 116 . . 3  |-  ( -.  2  ||  P  -> 
( P  e.  Prime  -> 
( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) ) )
839, 82jaoi 717 . 2  |-  ( ( P  =  2  \/ 
-.  2  ||  P
)  ->  ( P  e.  Prime  ->  ( (
2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) ) )
841, 83mpcom 36 1  |-  ( P  e.  Prime  ->  ( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   E.wrex 2476   {crab 2479    \ cdif 3154   ifcif 3561   {csn 3622   {cpr 3623   class class class wbr 4033    |-> cmpt 4094   ` cfv 5258  (class class class)co 5922   0cc0 7879   1c1 7880    x. cmul 7884    < clt 8061    - cmin 8197   -ucneg 8198    / cdiv 8699   NNcn 8990   2c2 9041   4c4 9043   7c7 9046   8c8 9047   NN0cn0 9249   ZZcz 9326   ...cfz 10083   |_cfl 10358    mod cmo 10414   ^cexp 10630  ♯chash 10867    || cdvds 11952   Primecprime 12275    /Lclgs 15238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ioo 9967  df-ico 9969  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716  df-dvds 11953  df-gcd 12121  df-prm 12276  df-phi 12379  df-pc 12454  df-lgs 15239
This theorem is referenced by:  2lgsoddprm  15354
  Copyright terms: Public domain W3C validator