ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgs Unicode version

Theorem 2lgs 15791
Description: The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 
P iff  P  ==  pm 1 (mod  8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of  ( N  /L 2 ) (lgs2 15704) to some degree, by demanding that reciprocity extend to the case  Q  =  2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.)
Assertion
Ref Expression
2lgs  |-  ( P  e.  Prime  ->  ( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )

Proof of Theorem 2lgs
Dummy variables  i  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prm2orodd 12656 . 2  |-  ( P  e.  Prime  ->  ( P  =  2  \/  -.  2  ||  P ) )
2 2lgslem4 15790 . . . . . 6  |-  ( ( 2  /L 2 )  =  1  <->  (
2  mod  8 )  e.  { 1 ,  7 } )
32a1i 9 . . . . 5  |-  ( P  =  2  ->  (
( 2  /L 2 )  =  1  <-> 
( 2  mod  8
)  e.  { 1 ,  7 } ) )
4 oveq2 6015 . . . . . 6  |-  ( P  =  2  ->  (
2  /L P )  =  ( 2  /L 2 ) )
54eqeq1d 2238 . . . . 5  |-  ( P  =  2  ->  (
( 2  /L
P )  =  1  <-> 
( 2  /L 2 )  =  1 ) )
6 oveq1 6014 . . . . . 6  |-  ( P  =  2  ->  ( P  mod  8 )  =  ( 2  mod  8
) )
76eleq1d 2298 . . . . 5  |-  ( P  =  2  ->  (
( P  mod  8
)  e.  { 1 ,  7 }  <->  ( 2  mod  8 )  e. 
{ 1 ,  7 } ) )
83, 5, 73bitr4d 220 . . . 4  |-  ( P  =  2  ->  (
( 2  /L
P )  =  1  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
98a1d 22 . . 3  |-  ( P  =  2  ->  ( P  e.  Prime  ->  (
( 2  /L
P )  =  1  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) ) )
10 2prm 12657 . . . . . . . . . 10  |-  2  e.  Prime
11 prmnn 12640 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
12 dvdsprime 12652 . . . . . . . . . 10  |-  ( ( 2  e.  Prime  /\  P  e.  NN )  ->  ( P  ||  2  <->  ( P  =  2  \/  P  =  1 ) ) )
1310, 11, 12sylancr 414 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( P 
||  2  <->  ( P  =  2  \/  P  =  1 ) ) )
14 z2even 12433 . . . . . . . . . . . . 13  |-  2  ||  2
15 breq2 4087 . . . . . . . . . . . . 13  |-  ( P  =  2  ->  (
2  ||  P  <->  2  ||  2 ) )
1614, 15mpbiri 168 . . . . . . . . . . . 12  |-  ( P  =  2  ->  2  ||  P )
1716a1d 22 . . . . . . . . . . 11  |-  ( P  =  2  ->  ( P  e.  Prime  ->  2  ||  P ) )
18 eleq1 2292 . . . . . . . . . . . 12  |-  ( P  =  1  ->  ( P  e.  Prime  <->  1  e.  Prime ) )
19 1nprm 12644 . . . . . . . . . . . . 13  |-  -.  1  e.  Prime
2019pm2.21i 649 . . . . . . . . . . . 12  |-  ( 1  e.  Prime  ->  2  ||  P )
2118, 20biimtrdi 163 . . . . . . . . . . 11  |-  ( P  =  1  ->  ( P  e.  Prime  ->  2  ||  P ) )
2217, 21jaoi 721 . . . . . . . . . 10  |-  ( ( P  =  2  \/  P  =  1 )  ->  ( P  e. 
Prime  ->  2  ||  P
) )
2322com12 30 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( ( P  =  2  \/  P  =  1 )  ->  2  ||  P
) )
2413, 23sylbid 150 . . . . . . . 8  |-  ( P  e.  Prime  ->  ( P 
||  2  ->  2  ||  P ) )
2524con3dimp 638 . . . . . . 7  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  -.  P  ||  2 )
26 2z 9482 . . . . . . 7  |-  2  e.  ZZ
2725, 26jctil 312 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( 2  e.  ZZ  /\ 
-.  P  ||  2
) )
28 2lgslem1 15778 . . . . . . 7  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( `  { x  e.  ZZ  |  E. i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2 )  < 
( x  mod  P
) ) } )  =  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) )
2928eqcomd 2235 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )
30 nnoddn2prmb 12793 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  -.  2  ||  P ) )
3130biimpri 133 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  P  e.  ( Prime  \  { 2 } ) )
32313ad2ant1 1042 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  ( 2  e.  ZZ  /\  -.  P  ||  2 )  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )  ->  P  e.  ( Prime  \  { 2 } ) )
33 eqid 2229 . . . . . . . 8  |-  ( ( P  -  1 )  /  2 )  =  ( ( P  - 
1 )  /  2
)
34 eqid 2229 . . . . . . . 8  |-  ( y  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  if ( ( y  x.  2 )  <  ( P  /  2 ) ,  ( y  x.  2 ) ,  ( P  -  ( y  x.  2 ) ) ) )  =  ( y  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  if ( ( y  x.  2 )  <  ( P  /  2 ) ,  ( y  x.  2 ) ,  ( P  -  ( y  x.  2 ) ) ) )
35 eqid 2229 . . . . . . . 8  |-  ( |_
`  ( P  / 
4 ) )  =  ( |_ `  ( P  /  4 ) )
36 eqid 2229 . . . . . . . 8  |-  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) )  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
3732, 33, 34, 35, 36gausslemma2d 15756 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  ( 2  e.  ZZ  /\  -.  P  ||  2 )  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) ) ) )
3837eqeq1d 2238 . . . . . 6  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  ( 2  e.  ZZ  /\  -.  P  ||  2 )  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )  ->  (
( 2  /L
P )  =  1  <-> 
( -u 1 ^ (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) ) )  =  1 ) )
3927, 29, 38mpd3an23 1373 . . . . 5  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( 2  /L P )  =  1  <->  ( -u 1 ^ ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) )  =  1 ) )
40362lgslem2 15779 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  e.  ZZ )
41 m1exp1 12420 . . . . . 6  |-  ( ( ( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  e.  ZZ  ->  (
( -u 1 ^ (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) ) )  =  1  <->  2 
||  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) ) )
4240, 41syl 14 . . . . 5  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( -u 1 ^ ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) )  =  1  <->  2  ||  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) ) ) )
43 2nn 9280 . . . . . . 7  |-  2  e.  NN
44 dvdsval3 12310 . . . . . . 7  |-  ( ( 2  e.  NN  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  e.  ZZ )  -> 
( 2  ||  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  <-> 
( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )  mod  2 )  =  0 ) )
4543, 40, 44sylancr 414 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( 2  ||  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  <-> 
( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )  mod  2 )  =  0 ) )
46362lgslem3 15788 . . . . . . . 8  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) )  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) )
4711, 46sylan 283 . . . . . . 7  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )  mod  2 )  =  if ( ( P  mod  8 )  e.  { 1 ,  7 } ,  0 ,  1 ) )
4847eqeq1d 2238 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) )  mod  2 )  =  0  <-> 
if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 )  =  0 ) )
49 prmz 12641 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  ZZ )
50 8nn 9286 . . . . . . . . . . . . . . . 16  |-  8  e.  NN
5150a1i 9 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  8  e.  NN )
5249, 51zmodcld 10575 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  ( P  mod  8 )  e. 
NN0 )
5352nn0zd 9575 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( P  mod  8 )  e.  ZZ )
54 1z 9480 . . . . . . . . . . . . 13  |-  1  e.  ZZ
55 zdceq 9530 . . . . . . . . . . . . 13  |-  ( ( ( P  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( P  mod  8 )  =  1 )
5653, 54, 55sylancl 413 . . . . . . . . . . . 12  |-  ( P  e.  Prime  -> DECID  ( P  mod  8
)  =  1 )
57 7nn 9285 . . . . . . . . . . . . . 14  |-  7  e.  NN
5857nnzi 9475 . . . . . . . . . . . . 13  |-  7  e.  ZZ
59 zdceq 9530 . . . . . . . . . . . . 13  |-  ( ( ( P  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( P  mod  8 )  =  7 )
6053, 58, 59sylancl 413 . . . . . . . . . . . 12  |-  ( P  e.  Prime  -> DECID  ( P  mod  8
)  =  7 )
61 dcor 941 . . . . . . . . . . . 12  |-  (DECID  ( P  mod  8 )  =  1  ->  (DECID  ( P  mod  8 )  =  7  -> DECID 
( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
6256, 60, 61sylc 62 . . . . . . . . . . 11  |-  ( P  e.  Prime  -> DECID  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) )
63 elprg 3686 . . . . . . . . . . . . 13  |-  ( ( P  mod  8 )  e.  NN0  ->  ( ( P  mod  8 )  e.  { 1 ,  7 }  <->  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
6452, 63syl 14 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  ( ( P  mod  8 )  e.  { 1 ,  7 }  <->  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
6564dcbid 843 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  (DECID  ( P  mod  8 )  e. 
{ 1 ,  7 }  <-> DECID  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
6662, 65mpbird 167 . . . . . . . . . 10  |-  ( P  e.  Prime  -> DECID  ( P  mod  8
)  e.  { 1 ,  7 } )
67 exmiddc 841 . . . . . . . . . 10  |-  (DECID  ( P  mod  8 )  e. 
{ 1 ,  7 }  ->  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  \/  -.  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
6866, 67syl 14 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( ( P  mod  8 )  e.  { 1 ,  7 }  \/  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )
69 iffalse 3610 . . . . . . . . . . . 12  |-  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  1 )
7069eqeq1d 2238 . . . . . . . . . . 11  |-  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 )  =  0  <->  1  =  0 ) )
71 1ne0 9186 . . . . . . . . . . . 12  |-  1  =/=  0
72 eqneqall 2410 . . . . . . . . . . . 12  |-  ( 1  =  0  ->  (
1  =/=  0  -> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
7371, 72mpi 15 . . . . . . . . . . 11  |-  ( 1  =  0  ->  ( P  mod  8 )  e. 
{ 1 ,  7 } )
7470, 73biimtrdi 163 . . . . . . . . . 10  |-  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 )  =  0  ->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
7574jao1i 801 . . . . . . . . 9  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  \/  -.  ( P  mod  8
)  e.  { 1 ,  7 } )  ->  ( if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 )  =  0  ->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
7668, 75syl 14 . . . . . . . 8  |-  ( P  e.  Prime  ->  ( if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0  -> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
77 iftrue 3607 . . . . . . . 8  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0 )
7876, 77impbid1 142 . . . . . . 7  |-  ( P  e.  Prime  ->  ( if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
7978adantr 276 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( if ( ( P  mod  8 )  e.  { 1 ,  7 } ,  0 ,  1 )  =  0  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
8045, 48, 793bitrd 214 . . . . 5  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( 2  ||  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
8139, 42, 803bitrd 214 . . . 4  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
8281expcom 116 . . 3  |-  ( -.  2  ||  P  -> 
( P  e.  Prime  -> 
( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) ) )
839, 82jaoi 721 . 2  |-  ( ( P  =  2  \/ 
-.  2  ||  P
)  ->  ( P  e.  Prime  ->  ( (
2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) ) )
841, 83mpcom 36 1  |-  ( P  e.  Prime  ->  ( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   E.wrex 2509   {crab 2512    \ cdif 3194   ifcif 3602   {csn 3666   {cpr 3667   class class class wbr 4083    |-> cmpt 4145   ` cfv 5318  (class class class)co 6007   0cc0 8007   1c1 8008    x. cmul 8012    < clt 8189    - cmin 8325   -ucneg 8326    / cdiv 8827   NNcn 9118   2c2 9169   4c4 9171   7c7 9174   8c8 9175   NN0cn0 9377   ZZcz 9454   ...cfz 10212   |_cfl 10496    mod cmo 10552   ^cexp 10768  ♯chash 11005    || cdvds 12306   Primecprime 12637    /Lclgs 15684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-ioo 10096  df-ico 10098  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-fac 10956  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-proddc 12070  df-dvds 12307  df-gcd 12483  df-prm 12638  df-phi 12741  df-pc 12816  df-lgs 15685
This theorem is referenced by:  2lgsoddprm  15800
  Copyright terms: Public domain W3C validator