| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgs | Unicode version | ||
| Description: The second supplement to
the law of quadratic reciprocity (for the
Legendre symbol extended to arbitrary primes as second argument). Two
is a square modulo a prime |
| Ref | Expression |
|---|---|
| 2lgs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prm2orodd 12614 |
. 2
| |
| 2 | 2lgslem4 15747 |
. . . . . 6
| |
| 3 | 2 | a1i 9 |
. . . . 5
|
| 4 | oveq2 5982 |
. . . . . 6
| |
| 5 | 4 | eqeq1d 2218 |
. . . . 5
|
| 6 | oveq1 5981 |
. . . . . 6
| |
| 7 | 6 | eleq1d 2278 |
. . . . 5
|
| 8 | 3, 5, 7 | 3bitr4d 220 |
. . . 4
|
| 9 | 8 | a1d 22 |
. . 3
|
| 10 | 2prm 12615 |
. . . . . . . . . 10
| |
| 11 | prmnn 12598 |
. . . . . . . . . 10
| |
| 12 | dvdsprime 12610 |
. . . . . . . . . 10
| |
| 13 | 10, 11, 12 | sylancr 414 |
. . . . . . . . 9
|
| 14 | z2even 12391 |
. . . . . . . . . . . . 13
| |
| 15 | breq2 4066 |
. . . . . . . . . . . . 13
| |
| 16 | 14, 15 | mpbiri 168 |
. . . . . . . . . . . 12
|
| 17 | 16 | a1d 22 |
. . . . . . . . . . 11
|
| 18 | eleq1 2272 |
. . . . . . . . . . . 12
| |
| 19 | 1nprm 12602 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | pm2.21i 649 |
. . . . . . . . . . . 12
|
| 21 | 18, 20 | biimtrdi 163 |
. . . . . . . . . . 11
|
| 22 | 17, 21 | jaoi 720 |
. . . . . . . . . 10
|
| 23 | 22 | com12 30 |
. . . . . . . . 9
|
| 24 | 13, 23 | sylbid 150 |
. . . . . . . 8
|
| 25 | 24 | con3dimp 638 |
. . . . . . 7
|
| 26 | 2z 9442 |
. . . . . . 7
| |
| 27 | 25, 26 | jctil 312 |
. . . . . 6
|
| 28 | 2lgslem1 15735 |
. . . . . . 7
| |
| 29 | 28 | eqcomd 2215 |
. . . . . 6
|
| 30 | nnoddn2prmb 12751 |
. . . . . . . . . 10
| |
| 31 | 30 | biimpri 133 |
. . . . . . . . 9
|
| 32 | 31 | 3ad2ant1 1023 |
. . . . . . . 8
|
| 33 | eqid 2209 |
. . . . . . . 8
| |
| 34 | eqid 2209 |
. . . . . . . 8
| |
| 35 | eqid 2209 |
. . . . . . . 8
| |
| 36 | eqid 2209 |
. . . . . . . 8
| |
| 37 | 32, 33, 34, 35, 36 | gausslemma2d 15713 |
. . . . . . 7
|
| 38 | 37 | eqeq1d 2218 |
. . . . . 6
|
| 39 | 27, 29, 38 | mpd3an23 1354 |
. . . . 5
|
| 40 | 36 | 2lgslem2 15736 |
. . . . . 6
|
| 41 | m1exp1 12378 |
. . . . . 6
| |
| 42 | 40, 41 | syl 14 |
. . . . 5
|
| 43 | 2nn 9240 |
. . . . . . 7
| |
| 44 | dvdsval3 12268 |
. . . . . . 7
| |
| 45 | 43, 40, 44 | sylancr 414 |
. . . . . 6
|
| 46 | 36 | 2lgslem3 15745 |
. . . . . . . 8
|
| 47 | 11, 46 | sylan 283 |
. . . . . . 7
|
| 48 | 47 | eqeq1d 2218 |
. . . . . 6
|
| 49 | prmz 12599 |
. . . . . . . . . . . . . . 15
| |
| 50 | 8nn 9246 |
. . . . . . . . . . . . . . . 16
| |
| 51 | 50 | a1i 9 |
. . . . . . . . . . . . . . 15
|
| 52 | 49, 51 | zmodcld 10534 |
. . . . . . . . . . . . . 14
|
| 53 | 52 | nn0zd 9535 |
. . . . . . . . . . . . 13
|
| 54 | 1z 9440 |
. . . . . . . . . . . . 13
| |
| 55 | zdceq 9490 |
. . . . . . . . . . . . 13
| |
| 56 | 53, 54, 55 | sylancl 413 |
. . . . . . . . . . . 12
|
| 57 | 7nn 9245 |
. . . . . . . . . . . . . 14
| |
| 58 | 57 | nnzi 9435 |
. . . . . . . . . . . . 13
|
| 59 | zdceq 9490 |
. . . . . . . . . . . . 13
| |
| 60 | 53, 58, 59 | sylancl 413 |
. . . . . . . . . . . 12
|
| 61 | dcor 940 |
. . . . . . . . . . . 12
| |
| 62 | 56, 60, 61 | sylc 62 |
. . . . . . . . . . 11
|
| 63 | elprg 3666 |
. . . . . . . . . . . . 13
| |
| 64 | 52, 63 | syl 14 |
. . . . . . . . . . . 12
|
| 65 | 64 | dcbid 842 |
. . . . . . . . . . 11
|
| 66 | 62, 65 | mpbird 167 |
. . . . . . . . . 10
|
| 67 | exmiddc 840 |
. . . . . . . . . 10
| |
| 68 | 66, 67 | syl 14 |
. . . . . . . . 9
|
| 69 | iffalse 3590 |
. . . . . . . . . . . 12
| |
| 70 | 69 | eqeq1d 2218 |
. . . . . . . . . . 11
|
| 71 | 1ne0 9146 |
. . . . . . . . . . . 12
| |
| 72 | eqneqall 2390 |
. . . . . . . . . . . 12
| |
| 73 | 71, 72 | mpi 15 |
. . . . . . . . . . 11
|
| 74 | 70, 73 | biimtrdi 163 |
. . . . . . . . . 10
|
| 75 | 74 | jao1i 800 |
. . . . . . . . 9
|
| 76 | 68, 75 | syl 14 |
. . . . . . . 8
|
| 77 | iftrue 3587 |
. . . . . . . 8
| |
| 78 | 76, 77 | impbid1 142 |
. . . . . . 7
|
| 79 | 78 | adantr 276 |
. . . . . 6
|
| 80 | 45, 48, 79 | 3bitrd 214 |
. . . . 5
|
| 81 | 39, 42, 80 | 3bitrd 214 |
. . . 4
|
| 82 | 81 | expcom 116 |
. . 3
|
| 83 | 9, 82 | jaoi 720 |
. 2
|
| 84 | 1, 83 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-stab 835 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-xor 1398 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-frec 6507 df-1o 6532 df-2o 6533 df-oadd 6536 df-er 6650 df-en 6858 df-dom 6859 df-fin 6860 df-sup 7119 df-inf 7120 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-ioo 10056 df-ico 10058 df-fz 10173 df-fzo 10307 df-fl 10457 df-mod 10512 df-seqfrec 10637 df-exp 10728 df-fac 10915 df-ihash 10965 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-clim 11756 df-proddc 12028 df-dvds 12265 df-gcd 12441 df-prm 12596 df-phi 12699 df-pc 12774 df-lgs 15642 |
| This theorem is referenced by: 2lgsoddprm 15757 |
| Copyright terms: Public domain | W3C validator |