ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgs Unicode version

Theorem 2lgs 15429
Description: The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 
P iff  P  ==  pm 1 (mod  8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of  ( N  /L 2 ) (lgs2 15342) to some degree, by demanding that reciprocity extend to the case  Q  =  2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.)
Assertion
Ref Expression
2lgs  |-  ( P  e.  Prime  ->  ( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )

Proof of Theorem 2lgs
Dummy variables  i  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prm2orodd 12319 . 2  |-  ( P  e.  Prime  ->  ( P  =  2  \/  -.  2  ||  P ) )
2 2lgslem4 15428 . . . . . 6  |-  ( ( 2  /L 2 )  =  1  <->  (
2  mod  8 )  e.  { 1 ,  7 } )
32a1i 9 . . . . 5  |-  ( P  =  2  ->  (
( 2  /L 2 )  =  1  <-> 
( 2  mod  8
)  e.  { 1 ,  7 } ) )
4 oveq2 5933 . . . . . 6  |-  ( P  =  2  ->  (
2  /L P )  =  ( 2  /L 2 ) )
54eqeq1d 2205 . . . . 5  |-  ( P  =  2  ->  (
( 2  /L
P )  =  1  <-> 
( 2  /L 2 )  =  1 ) )
6 oveq1 5932 . . . . . 6  |-  ( P  =  2  ->  ( P  mod  8 )  =  ( 2  mod  8
) )
76eleq1d 2265 . . . . 5  |-  ( P  =  2  ->  (
( P  mod  8
)  e.  { 1 ,  7 }  <->  ( 2  mod  8 )  e. 
{ 1 ,  7 } ) )
83, 5, 73bitr4d 220 . . . 4  |-  ( P  =  2  ->  (
( 2  /L
P )  =  1  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
98a1d 22 . . 3  |-  ( P  =  2  ->  ( P  e.  Prime  ->  (
( 2  /L
P )  =  1  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) ) )
10 2prm 12320 . . . . . . . . . 10  |-  2  e.  Prime
11 prmnn 12303 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
12 dvdsprime 12315 . . . . . . . . . 10  |-  ( ( 2  e.  Prime  /\  P  e.  NN )  ->  ( P  ||  2  <->  ( P  =  2  \/  P  =  1 ) ) )
1310, 11, 12sylancr 414 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( P 
||  2  <->  ( P  =  2  \/  P  =  1 ) ) )
14 z2even 12096 . . . . . . . . . . . . 13  |-  2  ||  2
15 breq2 4038 . . . . . . . . . . . . 13  |-  ( P  =  2  ->  (
2  ||  P  <->  2  ||  2 ) )
1614, 15mpbiri 168 . . . . . . . . . . . 12  |-  ( P  =  2  ->  2  ||  P )
1716a1d 22 . . . . . . . . . . 11  |-  ( P  =  2  ->  ( P  e.  Prime  ->  2  ||  P ) )
18 eleq1 2259 . . . . . . . . . . . 12  |-  ( P  =  1  ->  ( P  e.  Prime  <->  1  e.  Prime ) )
19 1nprm 12307 . . . . . . . . . . . . 13  |-  -.  1  e.  Prime
2019pm2.21i 647 . . . . . . . . . . . 12  |-  ( 1  e.  Prime  ->  2  ||  P )
2118, 20biimtrdi 163 . . . . . . . . . . 11  |-  ( P  =  1  ->  ( P  e.  Prime  ->  2  ||  P ) )
2217, 21jaoi 717 . . . . . . . . . 10  |-  ( ( P  =  2  \/  P  =  1 )  ->  ( P  e. 
Prime  ->  2  ||  P
) )
2322com12 30 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( ( P  =  2  \/  P  =  1 )  ->  2  ||  P
) )
2413, 23sylbid 150 . . . . . . . 8  |-  ( P  e.  Prime  ->  ( P 
||  2  ->  2  ||  P ) )
2524con3dimp 636 . . . . . . 7  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  -.  P  ||  2 )
26 2z 9371 . . . . . . 7  |-  2  e.  ZZ
2725, 26jctil 312 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( 2  e.  ZZ  /\ 
-.  P  ||  2
) )
28 2lgslem1 15416 . . . . . . 7  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( `  { x  e.  ZZ  |  E. i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2 )  < 
( x  mod  P
) ) } )  =  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) )
2928eqcomd 2202 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )
30 nnoddn2prmb 12456 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  -.  2  ||  P ) )
3130biimpri 133 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  P  e.  ( Prime  \  { 2 } ) )
32313ad2ant1 1020 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  ( 2  e.  ZZ  /\  -.  P  ||  2 )  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )  ->  P  e.  ( Prime  \  { 2 } ) )
33 eqid 2196 . . . . . . . 8  |-  ( ( P  -  1 )  /  2 )  =  ( ( P  - 
1 )  /  2
)
34 eqid 2196 . . . . . . . 8  |-  ( y  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  if ( ( y  x.  2 )  <  ( P  /  2 ) ,  ( y  x.  2 ) ,  ( P  -  ( y  x.  2 ) ) ) )  =  ( y  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  if ( ( y  x.  2 )  <  ( P  /  2 ) ,  ( y  x.  2 ) ,  ( P  -  ( y  x.  2 ) ) ) )
35 eqid 2196 . . . . . . . 8  |-  ( |_
`  ( P  / 
4 ) )  =  ( |_ `  ( P  /  4 ) )
36 eqid 2196 . . . . . . . 8  |-  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) )  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
3732, 33, 34, 35, 36gausslemma2d 15394 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  ( 2  e.  ZZ  /\  -.  P  ||  2 )  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) ) ) )
3837eqeq1d 2205 . . . . . 6  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  ( 2  e.  ZZ  /\  -.  P  ||  2 )  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )  ->  (
( 2  /L
P )  =  1  <-> 
( -u 1 ^ (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) ) )  =  1 ) )
3927, 29, 38mpd3an23 1350 . . . . 5  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( 2  /L P )  =  1  <->  ( -u 1 ^ ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) )  =  1 ) )
40362lgslem2 15417 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  e.  ZZ )
41 m1exp1 12083 . . . . . 6  |-  ( ( ( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  e.  ZZ  ->  (
( -u 1 ^ (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) ) )  =  1  <->  2 
||  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) ) )
4240, 41syl 14 . . . . 5  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( -u 1 ^ ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) )  =  1  <->  2  ||  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) ) ) )
43 2nn 9169 . . . . . . 7  |-  2  e.  NN
44 dvdsval3 11973 . . . . . . 7  |-  ( ( 2  e.  NN  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  e.  ZZ )  -> 
( 2  ||  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  <-> 
( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )  mod  2 )  =  0 ) )
4543, 40, 44sylancr 414 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( 2  ||  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  <-> 
( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )  mod  2 )  =  0 ) )
46362lgslem3 15426 . . . . . . . 8  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) )  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) )
4711, 46sylan 283 . . . . . . 7  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )  mod  2 )  =  if ( ( P  mod  8 )  e.  { 1 ,  7 } ,  0 ,  1 ) )
4847eqeq1d 2205 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) )  mod  2 )  =  0  <-> 
if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 )  =  0 ) )
49 prmz 12304 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  ZZ )
50 8nn 9175 . . . . . . . . . . . . . . . 16  |-  8  e.  NN
5150a1i 9 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  8  e.  NN )
5249, 51zmodcld 10454 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  ( P  mod  8 )  e. 
NN0 )
5352nn0zd 9463 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( P  mod  8 )  e.  ZZ )
54 1z 9369 . . . . . . . . . . . . 13  |-  1  e.  ZZ
55 zdceq 9418 . . . . . . . . . . . . 13  |-  ( ( ( P  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( P  mod  8 )  =  1 )
5653, 54, 55sylancl 413 . . . . . . . . . . . 12  |-  ( P  e.  Prime  -> DECID  ( P  mod  8
)  =  1 )
57 7nn 9174 . . . . . . . . . . . . . 14  |-  7  e.  NN
5857nnzi 9364 . . . . . . . . . . . . 13  |-  7  e.  ZZ
59 zdceq 9418 . . . . . . . . . . . . 13  |-  ( ( ( P  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( P  mod  8 )  =  7 )
6053, 58, 59sylancl 413 . . . . . . . . . . . 12  |-  ( P  e.  Prime  -> DECID  ( P  mod  8
)  =  7 )
61 dcor 937 . . . . . . . . . . . 12  |-  (DECID  ( P  mod  8 )  =  1  ->  (DECID  ( P  mod  8 )  =  7  -> DECID 
( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
6256, 60, 61sylc 62 . . . . . . . . . . 11  |-  ( P  e.  Prime  -> DECID  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) )
63 elprg 3643 . . . . . . . . . . . . 13  |-  ( ( P  mod  8 )  e.  NN0  ->  ( ( P  mod  8 )  e.  { 1 ,  7 }  <->  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
6452, 63syl 14 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  ( ( P  mod  8 )  e.  { 1 ,  7 }  <->  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
6564dcbid 839 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  (DECID  ( P  mod  8 )  e. 
{ 1 ,  7 }  <-> DECID  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
6662, 65mpbird 167 . . . . . . . . . 10  |-  ( P  e.  Prime  -> DECID  ( P  mod  8
)  e.  { 1 ,  7 } )
67 exmiddc 837 . . . . . . . . . 10  |-  (DECID  ( P  mod  8 )  e. 
{ 1 ,  7 }  ->  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  \/  -.  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
6866, 67syl 14 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( ( P  mod  8 )  e.  { 1 ,  7 }  \/  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )
69 iffalse 3570 . . . . . . . . . . . 12  |-  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  1 )
7069eqeq1d 2205 . . . . . . . . . . 11  |-  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 )  =  0  <->  1  =  0 ) )
71 1ne0 9075 . . . . . . . . . . . 12  |-  1  =/=  0
72 eqneqall 2377 . . . . . . . . . . . 12  |-  ( 1  =  0  ->  (
1  =/=  0  -> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
7371, 72mpi 15 . . . . . . . . . . 11  |-  ( 1  =  0  ->  ( P  mod  8 )  e. 
{ 1 ,  7 } )
7470, 73biimtrdi 163 . . . . . . . . . 10  |-  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 )  =  0  ->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
7574jao1i 797 . . . . . . . . 9  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  \/  -.  ( P  mod  8
)  e.  { 1 ,  7 } )  ->  ( if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 )  =  0  ->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
7668, 75syl 14 . . . . . . . 8  |-  ( P  e.  Prime  ->  ( if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0  -> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
77 iftrue 3567 . . . . . . . 8  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0 )
7876, 77impbid1 142 . . . . . . 7  |-  ( P  e.  Prime  ->  ( if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
7978adantr 276 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( if ( ( P  mod  8 )  e.  { 1 ,  7 } ,  0 ,  1 )  =  0  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
8045, 48, 793bitrd 214 . . . . 5  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( 2  ||  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
8139, 42, 803bitrd 214 . . . 4  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
8281expcom 116 . . 3  |-  ( -.  2  ||  P  -> 
( P  e.  Prime  -> 
( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) ) )
839, 82jaoi 717 . 2  |-  ( ( P  =  2  \/ 
-.  2  ||  P
)  ->  ( P  e.  Prime  ->  ( (
2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) ) )
841, 83mpcom 36 1  |-  ( P  e.  Prime  ->  ( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   E.wrex 2476   {crab 2479    \ cdif 3154   ifcif 3562   {csn 3623   {cpr 3624   class class class wbr 4034    |-> cmpt 4095   ` cfv 5259  (class class class)co 5925   0cc0 7896   1c1 7897    x. cmul 7901    < clt 8078    - cmin 8214   -ucneg 8215    / cdiv 8716   NNcn 9007   2c2 9058   4c4 9060   7c7 9063   8c8 9064   NN0cn0 9266   ZZcz 9343   ...cfz 10100   |_cfl 10375    mod cmo 10431   ^cexp 10647  ♯chash 10884    || cdvds 11969   Primecprime 12300    /Lclgs 15322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-ioo 9984  df-ico 9986  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-fac 10835  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-proddc 11733  df-dvds 11970  df-gcd 12146  df-prm 12301  df-phi 12404  df-pc 12479  df-lgs 15323
This theorem is referenced by:  2lgsoddprm  15438
  Copyright terms: Public domain W3C validator