ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgs Unicode version

Theorem 2lgs 15748
Description: The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 
P iff  P  ==  pm 1 (mod  8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of  ( N  /L 2 ) (lgs2 15661) to some degree, by demanding that reciprocity extend to the case  Q  =  2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.)
Assertion
Ref Expression
2lgs  |-  ( P  e.  Prime  ->  ( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )

Proof of Theorem 2lgs
Dummy variables  i  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prm2orodd 12614 . 2  |-  ( P  e.  Prime  ->  ( P  =  2  \/  -.  2  ||  P ) )
2 2lgslem4 15747 . . . . . 6  |-  ( ( 2  /L 2 )  =  1  <->  (
2  mod  8 )  e.  { 1 ,  7 } )
32a1i 9 . . . . 5  |-  ( P  =  2  ->  (
( 2  /L 2 )  =  1  <-> 
( 2  mod  8
)  e.  { 1 ,  7 } ) )
4 oveq2 5982 . . . . . 6  |-  ( P  =  2  ->  (
2  /L P )  =  ( 2  /L 2 ) )
54eqeq1d 2218 . . . . 5  |-  ( P  =  2  ->  (
( 2  /L
P )  =  1  <-> 
( 2  /L 2 )  =  1 ) )
6 oveq1 5981 . . . . . 6  |-  ( P  =  2  ->  ( P  mod  8 )  =  ( 2  mod  8
) )
76eleq1d 2278 . . . . 5  |-  ( P  =  2  ->  (
( P  mod  8
)  e.  { 1 ,  7 }  <->  ( 2  mod  8 )  e. 
{ 1 ,  7 } ) )
83, 5, 73bitr4d 220 . . . 4  |-  ( P  =  2  ->  (
( 2  /L
P )  =  1  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
98a1d 22 . . 3  |-  ( P  =  2  ->  ( P  e.  Prime  ->  (
( 2  /L
P )  =  1  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) ) )
10 2prm 12615 . . . . . . . . . 10  |-  2  e.  Prime
11 prmnn 12598 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
12 dvdsprime 12610 . . . . . . . . . 10  |-  ( ( 2  e.  Prime  /\  P  e.  NN )  ->  ( P  ||  2  <->  ( P  =  2  \/  P  =  1 ) ) )
1310, 11, 12sylancr 414 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( P 
||  2  <->  ( P  =  2  \/  P  =  1 ) ) )
14 z2even 12391 . . . . . . . . . . . . 13  |-  2  ||  2
15 breq2 4066 . . . . . . . . . . . . 13  |-  ( P  =  2  ->  (
2  ||  P  <->  2  ||  2 ) )
1614, 15mpbiri 168 . . . . . . . . . . . 12  |-  ( P  =  2  ->  2  ||  P )
1716a1d 22 . . . . . . . . . . 11  |-  ( P  =  2  ->  ( P  e.  Prime  ->  2  ||  P ) )
18 eleq1 2272 . . . . . . . . . . . 12  |-  ( P  =  1  ->  ( P  e.  Prime  <->  1  e.  Prime ) )
19 1nprm 12602 . . . . . . . . . . . . 13  |-  -.  1  e.  Prime
2019pm2.21i 649 . . . . . . . . . . . 12  |-  ( 1  e.  Prime  ->  2  ||  P )
2118, 20biimtrdi 163 . . . . . . . . . . 11  |-  ( P  =  1  ->  ( P  e.  Prime  ->  2  ||  P ) )
2217, 21jaoi 720 . . . . . . . . . 10  |-  ( ( P  =  2  \/  P  =  1 )  ->  ( P  e. 
Prime  ->  2  ||  P
) )
2322com12 30 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( ( P  =  2  \/  P  =  1 )  ->  2  ||  P
) )
2413, 23sylbid 150 . . . . . . . 8  |-  ( P  e.  Prime  ->  ( P 
||  2  ->  2  ||  P ) )
2524con3dimp 638 . . . . . . 7  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  -.  P  ||  2 )
26 2z 9442 . . . . . . 7  |-  2  e.  ZZ
2725, 26jctil 312 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( 2  e.  ZZ  /\ 
-.  P  ||  2
) )
28 2lgslem1 15735 . . . . . . 7  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( `  { x  e.  ZZ  |  E. i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2 )  < 
( x  mod  P
) ) } )  =  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) )
2928eqcomd 2215 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )
30 nnoddn2prmb 12751 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  -.  2  ||  P ) )
3130biimpri 133 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  P  e.  ( Prime  \  { 2 } ) )
32313ad2ant1 1023 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  ( 2  e.  ZZ  /\  -.  P  ||  2 )  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )  ->  P  e.  ( Prime  \  { 2 } ) )
33 eqid 2209 . . . . . . . 8  |-  ( ( P  -  1 )  /  2 )  =  ( ( P  - 
1 )  /  2
)
34 eqid 2209 . . . . . . . 8  |-  ( y  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  if ( ( y  x.  2 )  <  ( P  /  2 ) ,  ( y  x.  2 ) ,  ( P  -  ( y  x.  2 ) ) ) )  =  ( y  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  if ( ( y  x.  2 )  <  ( P  /  2 ) ,  ( y  x.  2 ) ,  ( P  -  ( y  x.  2 ) ) ) )
35 eqid 2209 . . . . . . . 8  |-  ( |_
`  ( P  / 
4 ) )  =  ( |_ `  ( P  /  4 ) )
36 eqid 2209 . . . . . . . 8  |-  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) )  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
3732, 33, 34, 35, 36gausslemma2d 15713 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  ( 2  e.  ZZ  /\  -.  P  ||  2 )  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) ) ) )
3837eqeq1d 2218 . . . . . 6  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  ( 2  e.  ZZ  /\  -.  P  ||  2 )  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  =  ( `  {
x  e.  ZZ  |  E. i  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) ) } ) )  ->  (
( 2  /L
P )  =  1  <-> 
( -u 1 ^ (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) ) )  =  1 ) )
3927, 29, 38mpd3an23 1354 . . . . 5  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( 2  /L P )  =  1  <->  ( -u 1 ^ ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) )  =  1 ) )
40362lgslem2 15736 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  e.  ZZ )
41 m1exp1 12378 . . . . . 6  |-  ( ( ( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  e.  ZZ  ->  (
( -u 1 ^ (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) ) )  =  1  <->  2 
||  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) ) )
4240, 41syl 14 . . . . 5  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( -u 1 ^ ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) )  =  1  <->  2  ||  ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) ) ) )
43 2nn 9240 . . . . . . 7  |-  2  e.  NN
44 dvdsval3 12268 . . . . . . 7  |-  ( ( 2  e.  NN  /\  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )  e.  ZZ )  -> 
( 2  ||  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  <-> 
( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )  mod  2 )  =  0 ) )
4543, 40, 44sylancr 414 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( 2  ||  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  <-> 
( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )  mod  2 )  =  0 ) )
46362lgslem3 15745 . . . . . . . 8  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) )  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) )
4711, 46sylan 283 . . . . . . 7  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )  mod  2 )  =  if ( ( P  mod  8 )  e.  { 1 ,  7 } ,  0 ,  1 ) )
4847eqeq1d 2218 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( ( ( ( P  -  1 )  /  2 )  -  ( |_ `  ( P  /  4
) ) )  mod  2 )  =  0  <-> 
if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 )  =  0 ) )
49 prmz 12599 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  ZZ )
50 8nn 9246 . . . . . . . . . . . . . . . 16  |-  8  e.  NN
5150a1i 9 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  8  e.  NN )
5249, 51zmodcld 10534 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  ( P  mod  8 )  e. 
NN0 )
5352nn0zd 9535 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( P  mod  8 )  e.  ZZ )
54 1z 9440 . . . . . . . . . . . . 13  |-  1  e.  ZZ
55 zdceq 9490 . . . . . . . . . . . . 13  |-  ( ( ( P  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( P  mod  8 )  =  1 )
5653, 54, 55sylancl 413 . . . . . . . . . . . 12  |-  ( P  e.  Prime  -> DECID  ( P  mod  8
)  =  1 )
57 7nn 9245 . . . . . . . . . . . . . 14  |-  7  e.  NN
5857nnzi 9435 . . . . . . . . . . . . 13  |-  7  e.  ZZ
59 zdceq 9490 . . . . . . . . . . . . 13  |-  ( ( ( P  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( P  mod  8 )  =  7 )
6053, 58, 59sylancl 413 . . . . . . . . . . . 12  |-  ( P  e.  Prime  -> DECID  ( P  mod  8
)  =  7 )
61 dcor 940 . . . . . . . . . . . 12  |-  (DECID  ( P  mod  8 )  =  1  ->  (DECID  ( P  mod  8 )  =  7  -> DECID 
( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
6256, 60, 61sylc 62 . . . . . . . . . . 11  |-  ( P  e.  Prime  -> DECID  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) )
63 elprg 3666 . . . . . . . . . . . . 13  |-  ( ( P  mod  8 )  e.  NN0  ->  ( ( P  mod  8 )  e.  { 1 ,  7 }  <->  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
6452, 63syl 14 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  ( ( P  mod  8 )  e.  { 1 ,  7 }  <->  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
6564dcbid 842 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  (DECID  ( P  mod  8 )  e. 
{ 1 ,  7 }  <-> DECID  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
6662, 65mpbird 167 . . . . . . . . . 10  |-  ( P  e.  Prime  -> DECID  ( P  mod  8
)  e.  { 1 ,  7 } )
67 exmiddc 840 . . . . . . . . . 10  |-  (DECID  ( P  mod  8 )  e. 
{ 1 ,  7 }  ->  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  \/  -.  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
6866, 67syl 14 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( ( P  mod  8 )  e.  { 1 ,  7 }  \/  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )
69 iffalse 3590 . . . . . . . . . . . 12  |-  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  1 )
7069eqeq1d 2218 . . . . . . . . . . 11  |-  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 )  =  0  <->  1  =  0 ) )
71 1ne0 9146 . . . . . . . . . . . 12  |-  1  =/=  0
72 eqneqall 2390 . . . . . . . . . . . 12  |-  ( 1  =  0  ->  (
1  =/=  0  -> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
7371, 72mpi 15 . . . . . . . . . . 11  |-  ( 1  =  0  ->  ( P  mod  8 )  e. 
{ 1 ,  7 } )
7470, 73biimtrdi 163 . . . . . . . . . 10  |-  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 )  =  0  ->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
7574jao1i 800 . . . . . . . . 9  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  \/  -.  ( P  mod  8
)  e.  { 1 ,  7 } )  ->  ( if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 )  =  0  ->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
7668, 75syl 14 . . . . . . . 8  |-  ( P  e.  Prime  ->  ( if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0  -> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
77 iftrue 3587 . . . . . . . 8  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0 )
7876, 77impbid1 142 . . . . . . 7  |-  ( P  e.  Prime  ->  ( if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
7978adantr 276 . . . . . 6  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( if ( ( P  mod  8 )  e.  { 1 ,  7 } ,  0 ,  1 )  =  0  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
8045, 48, 793bitrd 214 . . . . 5  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( 2  ||  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
8139, 42, 803bitrd 214 . . . 4  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
8281expcom 116 . . 3  |-  ( -.  2  ||  P  -> 
( P  e.  Prime  -> 
( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) ) )
839, 82jaoi 720 . 2  |-  ( ( P  =  2  \/ 
-.  2  ||  P
)  ->  ( P  e.  Prime  ->  ( (
2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) ) )
841, 83mpcom 36 1  |-  ( P  e.  Prime  ->  ( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 712  DECID wdc 838    /\ w3a 983    = wceq 1375    e. wcel 2180    =/= wne 2380   E.wrex 2489   {crab 2492    \ cdif 3174   ifcif 3582   {csn 3646   {cpr 3647   class class class wbr 4062    |-> cmpt 4124   ` cfv 5294  (class class class)co 5974   0cc0 7967   1c1 7968    x. cmul 7972    < clt 8149    - cmin 8285   -ucneg 8286    / cdiv 8787   NNcn 9078   2c2 9129   4c4 9131   7c7 9134   8c8 9135   NN0cn0 9337   ZZcz 9414   ...cfz 10172   |_cfl 10455    mod cmo 10511   ^cexp 10727  ♯chash 10964    || cdvds 12264   Primecprime 12595    /Lclgs 15641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-xor 1398  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-2o 6533  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-ioo 10056  df-ico 10058  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-fac 10915  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-proddc 12028  df-dvds 12265  df-gcd 12441  df-prm 12596  df-phi 12699  df-pc 12774  df-lgs 15642
This theorem is referenced by:  2lgsoddprm  15757
  Copyright terms: Public domain W3C validator