| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgs | Unicode version | ||
| Description: The second supplement to
the law of quadratic reciprocity (for the
Legendre symbol extended to arbitrary primes as second argument). Two
is a square modulo a prime |
| Ref | Expression |
|---|---|
| 2lgs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prm2orodd 12492 |
. 2
| |
| 2 | 2lgslem4 15624 |
. . . . . 6
| |
| 3 | 2 | a1i 9 |
. . . . 5
|
| 4 | oveq2 5959 |
. . . . . 6
| |
| 5 | 4 | eqeq1d 2215 |
. . . . 5
|
| 6 | oveq1 5958 |
. . . . . 6
| |
| 7 | 6 | eleq1d 2275 |
. . . . 5
|
| 8 | 3, 5, 7 | 3bitr4d 220 |
. . . 4
|
| 9 | 8 | a1d 22 |
. . 3
|
| 10 | 2prm 12493 |
. . . . . . . . . 10
| |
| 11 | prmnn 12476 |
. . . . . . . . . 10
| |
| 12 | dvdsprime 12488 |
. . . . . . . . . 10
| |
| 13 | 10, 11, 12 | sylancr 414 |
. . . . . . . . 9
|
| 14 | z2even 12269 |
. . . . . . . . . . . . 13
| |
| 15 | breq2 4051 |
. . . . . . . . . . . . 13
| |
| 16 | 14, 15 | mpbiri 168 |
. . . . . . . . . . . 12
|
| 17 | 16 | a1d 22 |
. . . . . . . . . . 11
|
| 18 | eleq1 2269 |
. . . . . . . . . . . 12
| |
| 19 | 1nprm 12480 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | pm2.21i 647 |
. . . . . . . . . . . 12
|
| 21 | 18, 20 | biimtrdi 163 |
. . . . . . . . . . 11
|
| 22 | 17, 21 | jaoi 718 |
. . . . . . . . . 10
|
| 23 | 22 | com12 30 |
. . . . . . . . 9
|
| 24 | 13, 23 | sylbid 150 |
. . . . . . . 8
|
| 25 | 24 | con3dimp 636 |
. . . . . . 7
|
| 26 | 2z 9407 |
. . . . . . 7
| |
| 27 | 25, 26 | jctil 312 |
. . . . . 6
|
| 28 | 2lgslem1 15612 |
. . . . . . 7
| |
| 29 | 28 | eqcomd 2212 |
. . . . . 6
|
| 30 | nnoddn2prmb 12629 |
. . . . . . . . . 10
| |
| 31 | 30 | biimpri 133 |
. . . . . . . . 9
|
| 32 | 31 | 3ad2ant1 1021 |
. . . . . . . 8
|
| 33 | eqid 2206 |
. . . . . . . 8
| |
| 34 | eqid 2206 |
. . . . . . . 8
| |
| 35 | eqid 2206 |
. . . . . . . 8
| |
| 36 | eqid 2206 |
. . . . . . . 8
| |
| 37 | 32, 33, 34, 35, 36 | gausslemma2d 15590 |
. . . . . . 7
|
| 38 | 37 | eqeq1d 2215 |
. . . . . 6
|
| 39 | 27, 29, 38 | mpd3an23 1352 |
. . . . 5
|
| 40 | 36 | 2lgslem2 15613 |
. . . . . 6
|
| 41 | m1exp1 12256 |
. . . . . 6
| |
| 42 | 40, 41 | syl 14 |
. . . . 5
|
| 43 | 2nn 9205 |
. . . . . . 7
| |
| 44 | dvdsval3 12146 |
. . . . . . 7
| |
| 45 | 43, 40, 44 | sylancr 414 |
. . . . . 6
|
| 46 | 36 | 2lgslem3 15622 |
. . . . . . . 8
|
| 47 | 11, 46 | sylan 283 |
. . . . . . 7
|
| 48 | 47 | eqeq1d 2215 |
. . . . . 6
|
| 49 | prmz 12477 |
. . . . . . . . . . . . . . 15
| |
| 50 | 8nn 9211 |
. . . . . . . . . . . . . . . 16
| |
| 51 | 50 | a1i 9 |
. . . . . . . . . . . . . . 15
|
| 52 | 49, 51 | zmodcld 10497 |
. . . . . . . . . . . . . 14
|
| 53 | 52 | nn0zd 9500 |
. . . . . . . . . . . . 13
|
| 54 | 1z 9405 |
. . . . . . . . . . . . 13
| |
| 55 | zdceq 9455 |
. . . . . . . . . . . . 13
| |
| 56 | 53, 54, 55 | sylancl 413 |
. . . . . . . . . . . 12
|
| 57 | 7nn 9210 |
. . . . . . . . . . . . . 14
| |
| 58 | 57 | nnzi 9400 |
. . . . . . . . . . . . 13
|
| 59 | zdceq 9455 |
. . . . . . . . . . . . 13
| |
| 60 | 53, 58, 59 | sylancl 413 |
. . . . . . . . . . . 12
|
| 61 | dcor 938 |
. . . . . . . . . . . 12
| |
| 62 | 56, 60, 61 | sylc 62 |
. . . . . . . . . . 11
|
| 63 | elprg 3654 |
. . . . . . . . . . . . 13
| |
| 64 | 52, 63 | syl 14 |
. . . . . . . . . . . 12
|
| 65 | 64 | dcbid 840 |
. . . . . . . . . . 11
|
| 66 | 62, 65 | mpbird 167 |
. . . . . . . . . 10
|
| 67 | exmiddc 838 |
. . . . . . . . . 10
| |
| 68 | 66, 67 | syl 14 |
. . . . . . . . 9
|
| 69 | iffalse 3580 |
. . . . . . . . . . . 12
| |
| 70 | 69 | eqeq1d 2215 |
. . . . . . . . . . 11
|
| 71 | 1ne0 9111 |
. . . . . . . . . . . 12
| |
| 72 | eqneqall 2387 |
. . . . . . . . . . . 12
| |
| 73 | 71, 72 | mpi 15 |
. . . . . . . . . . 11
|
| 74 | 70, 73 | biimtrdi 163 |
. . . . . . . . . 10
|
| 75 | 74 | jao1i 798 |
. . . . . . . . 9
|
| 76 | 68, 75 | syl 14 |
. . . . . . . 8
|
| 77 | iftrue 3577 |
. . . . . . . 8
| |
| 78 | 76, 77 | impbid1 142 |
. . . . . . 7
|
| 79 | 78 | adantr 276 |
. . . . . 6
|
| 80 | 45, 48, 79 | 3bitrd 214 |
. . . . 5
|
| 81 | 39, 42, 80 | 3bitrd 214 |
. . . 4
|
| 82 | 81 | expcom 116 |
. . 3
|
| 83 | 9, 82 | jaoi 718 |
. 2
|
| 84 | 1, 83 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-2o 6510 df-oadd 6513 df-er 6627 df-en 6835 df-dom 6836 df-fin 6837 df-sup 7093 df-inf 7094 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-ioo 10021 df-ico 10023 df-fz 10138 df-fzo 10272 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 df-fac 10878 df-ihash 10928 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-proddc 11906 df-dvds 12143 df-gcd 12319 df-prm 12474 df-phi 12577 df-pc 12652 df-lgs 15519 |
| This theorem is referenced by: 2lgsoddprm 15634 |
| Copyright terms: Public domain | W3C validator |