ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  posdifd GIF version

Theorem posdifd 8578
Description: Comparison of two numbers whose difference is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
posdifd (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))

Proof of Theorem posdifd
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 posdif 8501 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2167   class class class wbr 4034  (class class class)co 5925  cr 7897  0cc0 7898   < clt 8080  cmin 8216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-distr 8002  ax-i2m1 8003  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-sub 8218  df-neg 8219
This theorem is referenced by:  possumd  8615  ltmul1a  8637  ztri3or  9388  qbtwnre  10365  expnbnd  10774  resqrexlemover  11194  fsumlt  11648  cvgratnnlembern  11707  cvgratnnlemsumlt  11712  cvgratnnlemfm  11713  cvgratnnlemrate  11714  cvgratnn  11715  sin01gt0  11946  cos12dec  11952  nno  12090  pythagtriplem10  12465  ivthinclemlopn  14980  ivthinclemuopn  14982  ivthreinc  14989  sin0pilem1  15125  cosordlem  15193  cosq34lt1  15194  lgsquadlem1  15426  iooref1o  15791  trilpolemlt1  15798  trirec0  15801
  Copyright terms: Public domain W3C validator