ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  posdifd GIF version

Theorem posdifd 8576
Description: Comparison of two numbers whose difference is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
posdifd (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))

Proof of Theorem posdifd
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 posdif 8499 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2167   class class class wbr 4034  (class class class)co 5925  cr 7895  0cc0 7896   < clt 8078  cmin 8214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-sub 8216  df-neg 8217
This theorem is referenced by:  possumd  8613  ltmul1a  8635  ztri3or  9386  qbtwnre  10363  expnbnd  10772  resqrexlemover  11192  fsumlt  11646  cvgratnnlembern  11705  cvgratnnlemsumlt  11710  cvgratnnlemfm  11711  cvgratnnlemrate  11712  cvgratnn  11713  sin01gt0  11944  cos12dec  11950  nno  12088  pythagtriplem10  12463  ivthinclemlopn  14956  ivthinclemuopn  14958  ivthreinc  14965  sin0pilem1  15101  cosordlem  15169  cosq34lt1  15170  lgsquadlem1  15402  iooref1o  15765  trilpolemlt1  15772  trirec0  15775
  Copyright terms: Public domain W3C validator