ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem10 Unicode version

Theorem pythagtriplem10 12407
Description: Lemma for pythagtrip 12421. Show that  C  -  B is positive. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  0  <  ( C  -  B )
)

Proof of Theorem pythagtriplem10
StepHypRef Expression
1 nnre 8989 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  RR )
213ad2ant1 1020 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  RR )
3 nnap0 9011 . . . . . . . 8  |-  ( A  e.  NN  ->  A #  0 )
433ad2ant1 1020 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A #  0 )
52, 4sqgt0apd 10772 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( A ^ 2 ) )
62resqcld 10770 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  RR )
7 nnre 8989 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  RR )
873ad2ant2 1021 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  RR )
98resqcld 10770 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  RR )
106, 9ltaddpos2d 8549 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
0  <  ( A ^ 2 )  <->  ( B ^ 2 )  < 
( ( A ^
2 )  +  ( B ^ 2 ) ) ) )
115, 10mpbid 147 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  < 
( ( A ^
2 )  +  ( B ^ 2 ) ) )
1211adantr 276 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( B ^
2 )  <  (
( A ^ 2 )  +  ( B ^ 2 ) ) )
13 simpr 110 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )
1412, 13breqtrd 4055 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( B ^
2 )  <  ( C ^ 2 ) )
158adantr 276 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  B  e.  RR )
16 nnre 8989 . . . . . 6  |-  ( C  e.  NN  ->  C  e.  RR )
17163ad2ant3 1022 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  RR )
1817adantr 276 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  C  e.  RR )
19 nnnn0 9247 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  NN0 )
2019nn0ge0d 9296 . . . . . 6  |-  ( B  e.  NN  ->  0  <_  B )
21203ad2ant2 1021 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <_  B )
2221adantr 276 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  0  <_  B
)
23 nnnn0 9247 . . . . . . 7  |-  ( C  e.  NN  ->  C  e.  NN0 )
2423nn0ge0d 9296 . . . . . 6  |-  ( C  e.  NN  ->  0  <_  C )
25243ad2ant3 1022 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <_  C )
2625adantr 276 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  0  <_  C
)
2715, 18, 22, 26lt2sqd 10775 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( B  < 
C  <->  ( B ^
2 )  <  ( C ^ 2 ) ) )
2814, 27mpbird 167 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  B  <  C
)
2915, 18posdifd 8551 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( B  < 
C  <->  0  <  ( C  -  B )
) )
3028, 29mpbid 147 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  0  <  ( C  -  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4029  (class class class)co 5918   RRcr 7871   0cc0 7872    + caddc 7875    < clt 8054    <_ cle 8055    - cmin 8190   # cap 8600   NNcn 8982   2c2 9033   ^cexp 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-exp 10610
This theorem is referenced by:  pythagtriplem6  12408  pythagtriplem12  12413  pythagtriplem13  12414  pythagtriplem14  12415  pythagtriplem16  12417
  Copyright terms: Public domain W3C validator