ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsplusg Unicode version

Theorem prdsplusg 12979
Description: Addition in a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsbas.p  |-  P  =  ( S X_s R )
prdsbas.s  |-  ( ph  ->  S  e.  V )
prdsbas.r  |-  ( ph  ->  R  e.  W )
prdsbas.b  |-  B  =  ( Base `  P
)
prdsbas.i  |-  ( ph  ->  dom  R  =  I )
prdsplusg.b  |-  .+  =  ( +g  `  P )
Assertion
Ref Expression
prdsplusg  |-  ( ph  ->  .+  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
Distinct variable groups:    f, g, x, B    ph, f, g, x   
f, I, g, x    P, f, g, x    R, f, g, x    S, f, g, x
Allowed substitution hints:    .+ ( x, f,
g)    V( x, f, g)    W( x, f, g)

Proof of Theorem prdsplusg
Dummy variables  a  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . 2  |-  P  =  ( S X_s R )
2 prdsbas.s . 2  |-  ( ph  ->  S  e.  V )
3 prdsbas.r . 2  |-  ( ph  ->  R  e.  W )
4 prdsplusg.b . 2  |-  .+  =  ( +g  `  P )
5 plusgid 12813 . 2  |-  +g  = Slot  ( +g  `  ndx )
6 plusgndxnn 12814 . 2  |-  ( +g  ` 
ndx )  e.  NN
7 prdsbas.b . . . 4  |-  B  =  ( Base `  P
)
8 basfn 12761 . . . . 5  |-  Base  Fn  _V
9 prdsex 12971 . . . . . . 7  |-  ( ( S  e.  V  /\  R  e.  W )  ->  ( S X_s R )  e.  _V )
102, 3, 9syl2anc 411 . . . . . 6  |-  ( ph  ->  ( S X_s R )  e.  _V )
111, 10eqeltrid 2283 . . . . 5  |-  ( ph  ->  P  e.  _V )
12 funfvex 5578 . . . . . 6  |-  ( ( Fun  Base  /\  P  e. 
dom  Base )  ->  ( Base `  P )  e. 
_V )
1312funfni 5361 . . . . 5  |-  ( (
Base  Fn  _V  /\  P  e.  _V )  ->  ( Base `  P )  e. 
_V )
148, 11, 13sylancr 414 . . . 4  |-  ( ph  ->  ( Base `  P
)  e.  _V )
157, 14eqeltrid 2283 . . 3  |-  ( ph  ->  B  e.  _V )
16 mpoexga 6279 . . 3  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) )  e.  _V )
1715, 15, 16syl2anc 411 . 2  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) )  e.  _V )
18 snsstp2 3774 . . . . 5  |-  { <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }
19 ssun1 3327 . . . . 5  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )
2018, 19sstri 3193 . . . 4  |-  { <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )
21 ssun1 3327 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .i
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( ( 2nd `  a ) ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) c ) ,  e  e.  ( ( f  e.  B , 
g  e.  B  |->  X_ x  e.  I  (
( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) ) ) `
 a )  |->  ( x  e.  I  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) )
2220, 21sstri 3193 . . 3  |-  { <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( ( 2nd `  a ) ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) c ) ,  e  e.  ( ( f  e.  B , 
g  e.  B  |->  X_ x  e.  I  (
( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) ) ) `
 a )  |->  ( x  e.  I  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) )
23 eqid 2196 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
24 prdsbas.i . . . 4  |-  ( ph  ->  dom  R  =  I )
251, 2, 3, 7, 24prdsbas 12978 . . . 4  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
26 eqidd 2197 . . . 4  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) )  =  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
27 eqidd 2197 . . . 4  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) )
28 eqidd 2197 . . . 4  |-  ( ph  ->  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) )
29 eqidd 2197 . . . 4  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i `  ( R `  x )
) ( g `  x ) ) ) ) ) )
30 eqidd 2197 . . . 4  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
31 eqidd 2197 . . . 4  |-  ( ph  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } )
32 eqidd 2197 . . . 4  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  =  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
33 eqidd 2197 . . . 4  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
34 eqidd 2197 . . . 4  |-  ( ph  ->  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( ( 2nd `  a
) ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) c ) ,  e  e.  ( ( f  e.  B , 
g  e.  B  |->  X_ x  e.  I  (
( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) ) ) `
 a )  |->  ( x  e.  I  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )  =  ( a  e.  ( B  X.  B
) ,  c  e.  B  |->  ( d  e.  ( ( 2nd `  a
) ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) c ) ,  e  e.  ( ( f  e.  B , 
g  e.  B  |->  X_ x  e.  I  (
( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) ) ) `
 a )  |->  ( x  e.  I  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) ) )
351, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 2, 3prdsval 12975 . . 3  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( ( 2nd `  a ) ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) c ) ,  e  e.  ( ( f  e.  B , 
g  e.  B  |->  X_ x  e.  I  (
( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) ) ) `
 a )  |->  ( x  e.  I  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
3622, 35sseqtrrid 3235 . 2  |-  ( ph  ->  { <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  P )
371, 2, 3, 4, 5, 6, 17, 36prdsbaslemss 12976 1  |-  ( ph  ->  .+  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763    u. cun 3155    C_ wss 3157   {csn 3623   {cpr 3624   {ctp 3625   <.cop 3626   class class class wbr 4034   {copab 4094    |-> cmpt 4095    X. cxp 4662   dom cdm 4664   ran crn 4665    o. ccom 4668    Fn wfn 5254   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   1stc1st 6205   2ndc2nd 6206   X_cixp 6766   supcsup 7057   0cc0 7896   RR*cxr 8077    < clt 8078   ndxcnx 12700   Basecbs 12703   +g cplusg 12780   .rcmulr 12781  Scalarcsca 12783   .scvsca 12784   .icip 12785  TopSetcts 12786   lecple 12787   distcds 12789   Hom chom 12791  compcco 12792   TopOpenctopn 12942   Xt_cpt 12957    gsumg cgsu 12959   X_scprds 12967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-ixp 6767  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-fz 10101  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-ip 12798  df-tset 12799  df-ple 12800  df-ds 12802  df-hom 12804  df-cco 12805  df-rest 12943  df-topn 12944  df-topgen 12962  df-pt 12963  df-prds 12969
This theorem is referenced by:  prdsplusgval  12985
  Copyright terms: Public domain W3C validator