ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmhm2 Unicode version

Theorem resmhm2 13120
Description: One direction of resmhm2b 13121. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypothesis
Ref Expression
resmhm2.u  |-  U  =  ( Ts  X )
Assertion
Ref Expression
resmhm2  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  F  e.  ( S MndHom  T ) )

Proof of Theorem resmhm2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl1 13095 . . 3  |-  ( F  e.  ( S MndHom  U
)  ->  S  e.  Mnd )
2 submrcl 13103 . . 3  |-  ( X  e.  (SubMnd `  T
)  ->  T  e.  Mnd )
31, 2anim12i 338 . 2  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  ( S  e.  Mnd  /\  T  e. 
Mnd ) )
4 eqid 2196 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
5 eqid 2196 . . . . 5  |-  ( Base `  U )  =  (
Base `  U )
64, 5mhmf 13097 . . . 4  |-  ( F  e.  ( S MndHom  U
)  ->  F :
( Base `  S ) --> ( Base `  U )
)
7 resmhm2.u . . . . . 6  |-  U  =  ( Ts  X )
87submbas 13113 . . . . 5  |-  ( X  e.  (SubMnd `  T
)  ->  X  =  ( Base `  U )
)
9 eqid 2196 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
109submss 13108 . . . . 5  |-  ( X  e.  (SubMnd `  T
)  ->  X  C_  ( Base `  T ) )
118, 10eqsstrrd 3220 . . . 4  |-  ( X  e.  (SubMnd `  T
)  ->  ( Base `  U )  C_  ( Base `  T ) )
12 fss 5419 . . . 4  |-  ( ( F : ( Base `  S ) --> ( Base `  U )  /\  ( Base `  U )  C_  ( Base `  T )
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
136, 11, 12syl2an 289 . . 3  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
14 eqid 2196 . . . . . . . 8  |-  ( +g  `  S )  =  ( +g  `  S )
15 eqid 2196 . . . . . . . 8  |-  ( +g  `  U )  =  ( +g  `  U )
164, 14, 15mhmlin 13099 . . . . . . 7  |-  ( ( F  e.  ( S MndHom  U )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U
) ( F `  y ) ) )
17163expb 1206 . . . . . 6  |-  ( ( F  e.  ( S MndHom  U )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  (
x ( +g  `  S
) y ) )  =  ( ( F `
 x ) ( +g  `  U ) ( F `  y
) ) )
1817adantlr 477 . . . . 5  |-  ( ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  (
x ( +g  `  S
) y ) )  =  ( ( F `
 x ) ( +g  `  U ) ( F `  y
) ) )
197a1i 9 . . . . . . . 8  |-  ( X  e.  (SubMnd `  T
)  ->  U  =  ( Ts  X ) )
20 eqidd 2197 . . . . . . . 8  |-  ( X  e.  (SubMnd `  T
)  ->  ( +g  `  T )  =  ( +g  `  T ) )
21 id 19 . . . . . . . 8  |-  ( X  e.  (SubMnd `  T
)  ->  X  e.  (SubMnd `  T ) )
2219, 20, 21, 2ressplusgd 12806 . . . . . . 7  |-  ( X  e.  (SubMnd `  T
)  ->  ( +g  `  T )  =  ( +g  `  U ) )
2322ad2antlr 489 . . . . . 6  |-  ( ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( +g  `  T )  =  ( +g  `  U
) )
2423oveqd 5939 . . . . 5  |-  ( ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( ( F `  x ) ( +g  `  T ) ( F `
 y ) )  =  ( ( F `
 x ) ( +g  `  U ) ( F `  y
) ) )
2518, 24eqtr4d 2232 . . . 4  |-  ( ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  (
x ( +g  `  S
) y ) )  =  ( ( F `
 x ) ( +g  `  T ) ( F `  y
) ) )
2625ralrimivva 2579 . . 3  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
27 eqid 2196 . . . . . 6  |-  ( 0g
`  S )  =  ( 0g `  S
)
28 eqid 2196 . . . . . 6  |-  ( 0g
`  U )  =  ( 0g `  U
)
2927, 28mhm0 13100 . . . . 5  |-  ( F  e.  ( S MndHom  U
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  U ) )
3029adantr 276 . . . 4  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  U ) )
31 eqid 2196 . . . . . 6  |-  ( 0g
`  T )  =  ( 0g `  T
)
327, 31subm0 13114 . . . . 5  |-  ( X  e.  (SubMnd `  T
)  ->  ( 0g `  T )  =  ( 0g `  U ) )
3332adantl 277 . . . 4  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  ( 0g `  T )  =  ( 0g `  U ) )
3430, 33eqtr4d 2232 . . 3  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
3513, 26, 343jca 1179 . 2  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  ( F : ( Base `  S
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  T ) ) )
36 eqid 2196 . . 3  |-  ( +g  `  T )  =  ( +g  `  T )
374, 9, 14, 36, 27, 31ismhm 13093 . 2  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : ( Base `  S
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  T ) ) ) )
383, 35, 37sylanbrc 417 1  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  F  e.  ( S MndHom  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   -->wf 5254   ` cfv 5258  (class class class)co 5922   Basecbs 12678   ↾s cress 12679   +g cplusg 12755   0gc0g 12927   Mndcmnd 13057   MndHom cmhm 13089  SubMndcsubmnd 13090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mhm 13091  df-submnd 13092
This theorem is referenced by:  resmhm2b  13121  resghm2  13391  lgseisenlem4  15314
  Copyright terms: Public domain W3C validator