ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmhm2 Unicode version

Theorem resmhm2 13320
Description: One direction of resmhm2b 13321. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypothesis
Ref Expression
resmhm2.u  |-  U  =  ( Ts  X )
Assertion
Ref Expression
resmhm2  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  F  e.  ( S MndHom  T ) )

Proof of Theorem resmhm2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl1 13295 . . 3  |-  ( F  e.  ( S MndHom  U
)  ->  S  e.  Mnd )
2 submrcl 13303 . . 3  |-  ( X  e.  (SubMnd `  T
)  ->  T  e.  Mnd )
31, 2anim12i 338 . 2  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  ( S  e.  Mnd  /\  T  e. 
Mnd ) )
4 eqid 2205 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
5 eqid 2205 . . . . 5  |-  ( Base `  U )  =  (
Base `  U )
64, 5mhmf 13297 . . . 4  |-  ( F  e.  ( S MndHom  U
)  ->  F :
( Base `  S ) --> ( Base `  U )
)
7 resmhm2.u . . . . . 6  |-  U  =  ( Ts  X )
87submbas 13313 . . . . 5  |-  ( X  e.  (SubMnd `  T
)  ->  X  =  ( Base `  U )
)
9 eqid 2205 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
109submss 13308 . . . . 5  |-  ( X  e.  (SubMnd `  T
)  ->  X  C_  ( Base `  T ) )
118, 10eqsstrrd 3230 . . . 4  |-  ( X  e.  (SubMnd `  T
)  ->  ( Base `  U )  C_  ( Base `  T ) )
12 fss 5437 . . . 4  |-  ( ( F : ( Base `  S ) --> ( Base `  U )  /\  ( Base `  U )  C_  ( Base `  T )
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
136, 11, 12syl2an 289 . . 3  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
14 eqid 2205 . . . . . . . 8  |-  ( +g  `  S )  =  ( +g  `  S )
15 eqid 2205 . . . . . . . 8  |-  ( +g  `  U )  =  ( +g  `  U )
164, 14, 15mhmlin 13299 . . . . . . 7  |-  ( ( F  e.  ( S MndHom  U )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U
) ( F `  y ) ) )
17163expb 1207 . . . . . 6  |-  ( ( F  e.  ( S MndHom  U )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  (
x ( +g  `  S
) y ) )  =  ( ( F `
 x ) ( +g  `  U ) ( F `  y
) ) )
1817adantlr 477 . . . . 5  |-  ( ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  (
x ( +g  `  S
) y ) )  =  ( ( F `
 x ) ( +g  `  U ) ( F `  y
) ) )
197a1i 9 . . . . . . . 8  |-  ( X  e.  (SubMnd `  T
)  ->  U  =  ( Ts  X ) )
20 eqidd 2206 . . . . . . . 8  |-  ( X  e.  (SubMnd `  T
)  ->  ( +g  `  T )  =  ( +g  `  T ) )
21 id 19 . . . . . . . 8  |-  ( X  e.  (SubMnd `  T
)  ->  X  e.  (SubMnd `  T ) )
2219, 20, 21, 2ressplusgd 12961 . . . . . . 7  |-  ( X  e.  (SubMnd `  T
)  ->  ( +g  `  T )  =  ( +g  `  U ) )
2322ad2antlr 489 . . . . . 6  |-  ( ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( +g  `  T )  =  ( +g  `  U
) )
2423oveqd 5961 . . . . 5  |-  ( ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( ( F `  x ) ( +g  `  T ) ( F `
 y ) )  =  ( ( F `
 x ) ( +g  `  U ) ( F `  y
) ) )
2518, 24eqtr4d 2241 . . . 4  |-  ( ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  (
x ( +g  `  S
) y ) )  =  ( ( F `
 x ) ( +g  `  T ) ( F `  y
) ) )
2625ralrimivva 2588 . . 3  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
27 eqid 2205 . . . . . 6  |-  ( 0g
`  S )  =  ( 0g `  S
)
28 eqid 2205 . . . . . 6  |-  ( 0g
`  U )  =  ( 0g `  U
)
2927, 28mhm0 13300 . . . . 5  |-  ( F  e.  ( S MndHom  U
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  U ) )
3029adantr 276 . . . 4  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  U ) )
31 eqid 2205 . . . . . 6  |-  ( 0g
`  T )  =  ( 0g `  T
)
327, 31subm0 13314 . . . . 5  |-  ( X  e.  (SubMnd `  T
)  ->  ( 0g `  T )  =  ( 0g `  U ) )
3332adantl 277 . . . 4  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  ( 0g `  T )  =  ( 0g `  U ) )
3430, 33eqtr4d 2241 . . 3  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
3513, 26, 343jca 1180 . 2  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  ( F : ( Base `  S
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  T ) ) )
36 eqid 2205 . . 3  |-  ( +g  `  T )  =  ( +g  `  T )
374, 9, 14, 36, 27, 31ismhm 13293 . 2  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : ( Base `  S
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  T ) ) ) )
383, 35, 37sylanbrc 417 1  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  F  e.  ( S MndHom  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166   -->wf 5267   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   +g cplusg 12909   0gc0g 13088   Mndcmnd 13248   MndHom cmhm 13289  SubMndcsubmnd 13290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-mhm 13291  df-submnd 13292
This theorem is referenced by:  resmhm2b  13321  resghm2  13597  lgseisenlem4  15550
  Copyright terms: Public domain W3C validator