ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdssqlem Unicode version

Theorem dvdssqlem 12044
Description: Lemma for dvdssq 12045. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dvdssqlem  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  ||  N  <->  ( M ^ 2 ) 
||  ( N ^
2 ) ) )

Proof of Theorem dvdssqlem
StepHypRef Expression
1 nnz 9285 . . 3  |-  ( M  e.  NN  ->  M  e.  ZZ )
2 nnz 9285 . . 3  |-  ( N  e.  NN  ->  N  e.  ZZ )
3 dvdssqim 12038 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( M ^ 2 )  ||  ( N ^ 2 ) ) )
41, 2, 3syl2an 289 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  ||  N  ->  ( M ^ 2 )  ||  ( N ^ 2 ) ) )
5 sqgcd 12043 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  =  ( ( M ^ 2 )  gcd  ( N ^ 2 ) ) )
65adantr 276 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( M ^
2 )  ||  ( N ^ 2 ) )  ->  ( ( M  gcd  N ) ^
2 )  =  ( ( M ^ 2 )  gcd  ( N ^ 2 ) ) )
7 nnsqcl 10603 . . . . . . . 8  |-  ( M  e.  NN  ->  ( M ^ 2 )  e.  NN )
8 nnsqcl 10603 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  NN )
9 gcdeq 12037 . . . . . . . 8  |-  ( ( ( M ^ 2 )  e.  NN  /\  ( N ^ 2 )  e.  NN )  -> 
( ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  =  ( M ^ 2 )  <-> 
( M ^ 2 )  ||  ( N ^ 2 ) ) )
107, 8, 9syl2an 289 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  =  ( M ^ 2 )  <-> 
( M ^ 2 )  ||  ( N ^ 2 ) ) )
1110biimpar 297 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( M ^
2 )  ||  ( N ^ 2 ) )  ->  ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  =  ( M ^ 2 ) )
126, 11eqtrd 2220 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( M ^
2 )  ||  ( N ^ 2 ) )  ->  ( ( M  gcd  N ) ^
2 )  =  ( M ^ 2 ) )
13 gcdcl 11980 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
141, 2, 13syl2an 289 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  NN0 )
1514nn0red 9243 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  RR )
1614nn0ge0d 9245 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <_  ( M  gcd  N ) )
17 nnre 8939 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  RR )
1817adantr 276 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  RR )
19 nnnn0 9196 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  NN0 )
2019nn0ge0d 9245 . . . . . . . 8  |-  ( M  e.  NN  ->  0  <_  M )
2120adantr 276 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <_  M )
22 sq11 10606 . . . . . . 7  |-  ( ( ( ( M  gcd  N )  e.  RR  /\  0  <_  ( M  gcd  N ) )  /\  ( M  e.  RR  /\  0  <_  M ) )  -> 
( ( ( M  gcd  N ) ^
2 )  =  ( M ^ 2 )  <-> 
( M  gcd  N
)  =  M ) )
2315, 16, 18, 21, 22syl22anc 1249 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  gcd  N ) ^
2 )  =  ( M ^ 2 )  <-> 
( M  gcd  N
)  =  M ) )
2423adantr 276 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( M ^
2 )  ||  ( N ^ 2 ) )  ->  ( ( ( M  gcd  N ) ^ 2 )  =  ( M ^ 2 )  <->  ( M  gcd  N )  =  M ) )
2512, 24mpbid 147 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( M ^
2 )  ||  ( N ^ 2 ) )  ->  ( M  gcd  N )  =  M )
26 gcddvds 11977 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
271, 2, 26syl2an 289 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
2827adantr 276 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( M ^
2 )  ||  ( N ^ 2 ) )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N )  ||  N ) )
2928simprd 114 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( M ^
2 )  ||  ( N ^ 2 ) )  ->  ( M  gcd  N )  ||  N )
3025, 29eqbrtrrd 4039 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( M ^
2 )  ||  ( N ^ 2 ) )  ->  M  ||  N
)
3130ex 115 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M ^
2 )  ||  ( N ^ 2 )  ->  M  ||  N ) )
324, 31impbid 129 1  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  ||  N  <->  ( M ^ 2 ) 
||  ( N ^
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   class class class wbr 4015  (class class class)co 5888   RRcr 7823   0cc0 7824    <_ cle 8006   NNcn 8932   2c2 8983   NN0cn0 9189   ZZcz 9266   ^cexp 10532    || cdvds 11807    gcd cgcd 11956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-sup 6996  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-fz 10022  df-fzo 10156  df-fl 10283  df-mod 10336  df-seqfrec 10459  df-exp 10533  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-dvds 11808  df-gcd 11957
This theorem is referenced by:  dvdssq  12045
  Copyright terms: Public domain W3C validator