| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq2dv | Unicode version | ||
| Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| sumeq2dv.1 |
|
| Ref | Expression |
|---|---|
| sumeq2dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq2dv.1 |
. . 3
| |
| 2 | 1 | ralrimiva 2603 |
. 2
|
| 3 | 2 | sumeq2d 11878 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 df-seqfrec 10670 df-sumdc 11865 |
| This theorem is referenced by: sumeq2sdv 11881 2sumeq2dv 11882 sumeq12dv 11883 sumeq12rdv 11884 sumfct 11885 fsumf1o 11901 fisumss 11903 fsumsplit 11918 isummulc1 11938 isumdivapc 11939 isumge0 11941 sumsplitdc 11943 fsum2dlemstep 11945 fsumshftm 11956 fisum0diag2 11958 fsummulc1 11960 fsumdivapc 11961 fsumneg 11962 fsumsub 11963 fsum2mul 11964 telfsumo2 11978 fsumparts 11981 hashiun 11989 hash2iun 11990 hash2iun1dif1 11991 binomlem 11994 binom1p 11996 isum1p 12003 arisum 12009 trireciplem 12011 geosergap 12017 geo2sum 12025 mertenslemi1 12046 mertenslem2 12047 mertensabs 12048 efval2 12176 efaddlem 12185 fsumdvds 12353 phisum 12763 pcfac 12873 elply2 15409 elplyd 15415 plyaddlem1 15421 plymullem1 15422 plycjlemc 15434 plyrecj 15437 dvply1 15439 sgmval2 15658 fsumdvdsmul 15665 sgmppw 15666 1sgmprm 15668 perfectlem2 15674 lgsquadlem1 15756 lgsquadlem2 15757 cvgcmp2nlemabs 16400 redcwlpolemeq1 16422 nconstwlpolem0 16431 |
| Copyright terms: Public domain | W3C validator |