ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq2dv Unicode version

Theorem sumeq2dv 11344
Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypothesis
Ref Expression
sumeq2dv.1  |-  ( (
ph  /\  k  e.  A )  ->  B  =  C )
Assertion
Ref Expression
sumeq2dv  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  A  C )
Distinct variable groups:    A, k    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem sumeq2dv
StepHypRef Expression
1 sumeq2dv.1 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  =  C )
21ralrimiva 2548 . 2  |-  ( ph  ->  A. k  e.  A  B  =  C )
32sumeq2d 11343 1  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   sum_csu 11329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8893  df-n0 9150  df-z 9227  df-uz 9502  df-fz 9980  df-seqfrec 10416  df-sumdc 11330
This theorem is referenced by:  sumeq2sdv  11346  2sumeq2dv  11347  sumeq12dv  11348  sumeq12rdv  11349  sumfct  11350  fsumf1o  11366  fisumss  11368  fsumsplit  11383  isummulc1  11403  isumdivapc  11404  isumge0  11406  sumsplitdc  11408  fsum2dlemstep  11410  fsumshftm  11421  fisum0diag2  11423  fsummulc1  11425  fsumdivapc  11426  fsumneg  11427  fsumsub  11428  fsum2mul  11429  telfsumo2  11443  fsumparts  11446  hashiun  11454  hash2iun  11455  hash2iun1dif1  11456  binomlem  11459  binom1p  11461  isum1p  11468  arisum  11474  trireciplem  11476  geosergap  11482  geo2sum  11490  mertenslemi1  11511  mertenslem2  11512  mertensabs  11513  efval2  11641  efaddlem  11650  phisum  12207  pcfac  12315  cvgcmp2nlemabs  14341  redcwlpolemeq1  14363  nconstwlpolem0  14371
  Copyright terms: Public domain W3C validator