ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq2dv Unicode version

Theorem sumeq2dv 11550
Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypothesis
Ref Expression
sumeq2dv.1  |-  ( (
ph  /\  k  e.  A )  ->  B  =  C )
Assertion
Ref Expression
sumeq2dv  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  A  C )
Distinct variable groups:    A, k    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem sumeq2dv
StepHypRef Expression
1 sumeq2dv.1 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  =  C )
21ralrimiva 2570 . 2  |-  ( ph  ->  A. k  e.  A  B  =  C )
32sumeq2d 11549 1  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   sum_csu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-seqfrec 10557  df-sumdc 11536
This theorem is referenced by:  sumeq2sdv  11552  2sumeq2dv  11553  sumeq12dv  11554  sumeq12rdv  11555  sumfct  11556  fsumf1o  11572  fisumss  11574  fsumsplit  11589  isummulc1  11609  isumdivapc  11610  isumge0  11612  sumsplitdc  11614  fsum2dlemstep  11616  fsumshftm  11627  fisum0diag2  11629  fsummulc1  11631  fsumdivapc  11632  fsumneg  11633  fsumsub  11634  fsum2mul  11635  telfsumo2  11649  fsumparts  11652  hashiun  11660  hash2iun  11661  hash2iun1dif1  11662  binomlem  11665  binom1p  11667  isum1p  11674  arisum  11680  trireciplem  11682  geosergap  11688  geo2sum  11696  mertenslemi1  11717  mertenslem2  11718  mertensabs  11719  efval2  11847  efaddlem  11856  fsumdvds  12024  phisum  12434  pcfac  12544  elply2  15055  elplyd  15061  plyaddlem1  15067  plymullem1  15068  plycjlemc  15080  plyrecj  15083  dvply1  15085  sgmval2  15304  fsumdvdsmul  15311  sgmppw  15312  1sgmprm  15314  perfectlem2  15320  lgsquadlem1  15402  lgsquadlem2  15403  cvgcmp2nlemabs  15763  redcwlpolemeq1  15785  nconstwlpolem0  15794
  Copyright terms: Public domain W3C validator