Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sumeq2dv | Unicode version |
Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
sumeq2dv.1 |
Ref | Expression |
---|---|
sumeq2dv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq2dv.1 | . . 3 | |
2 | 1 | ralrimiva 2543 | . 2 |
3 | 2 | sumeq2d 11330 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 csu 11316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-seqfrec 10402 df-sumdc 11317 |
This theorem is referenced by: sumeq2sdv 11333 2sumeq2dv 11334 sumeq12dv 11335 sumeq12rdv 11336 sumfct 11337 fsumf1o 11353 fisumss 11355 fsumsplit 11370 isummulc1 11390 isumdivapc 11391 isumge0 11393 sumsplitdc 11395 fsum2dlemstep 11397 fsumshftm 11408 fisum0diag2 11410 fsummulc1 11412 fsumdivapc 11413 fsumneg 11414 fsumsub 11415 fsum2mul 11416 telfsumo2 11430 fsumparts 11433 hashiun 11441 hash2iun 11442 hash2iun1dif1 11443 binomlem 11446 binom1p 11448 isum1p 11455 arisum 11461 trireciplem 11463 geosergap 11469 geo2sum 11477 mertenslemi1 11498 mertenslem2 11499 mertensabs 11500 efval2 11628 efaddlem 11637 phisum 12194 pcfac 12302 cvgcmp2nlemabs 14064 redcwlpolemeq1 14086 nconstwlpolem0 14094 |
Copyright terms: Public domain | W3C validator |