| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq2dv | Unicode version | ||
| Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| sumeq2dv.1 |
|
| Ref | Expression |
|---|---|
| sumeq2dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq2dv.1 |
. . 3
| |
| 2 | 1 | ralrimiva 2570 |
. 2
|
| 3 | 2 | sumeq2d 11549 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-seqfrec 10557 df-sumdc 11536 |
| This theorem is referenced by: sumeq2sdv 11552 2sumeq2dv 11553 sumeq12dv 11554 sumeq12rdv 11555 sumfct 11556 fsumf1o 11572 fisumss 11574 fsumsplit 11589 isummulc1 11609 isumdivapc 11610 isumge0 11612 sumsplitdc 11614 fsum2dlemstep 11616 fsumshftm 11627 fisum0diag2 11629 fsummulc1 11631 fsumdivapc 11632 fsumneg 11633 fsumsub 11634 fsum2mul 11635 telfsumo2 11649 fsumparts 11652 hashiun 11660 hash2iun 11661 hash2iun1dif1 11662 binomlem 11665 binom1p 11667 isum1p 11674 arisum 11680 trireciplem 11682 geosergap 11688 geo2sum 11696 mertenslemi1 11717 mertenslem2 11718 mertensabs 11719 efval2 11847 efaddlem 11856 fsumdvds 12024 phisum 12434 pcfac 12544 elply2 15055 elplyd 15061 plyaddlem1 15067 plymullem1 15068 plycjlemc 15080 plyrecj 15083 dvply1 15085 sgmval2 15304 fsumdvdsmul 15311 sgmppw 15312 1sgmprm 15314 perfectlem2 15320 lgsquadlem1 15402 lgsquadlem2 15403 cvgcmp2nlemabs 15763 redcwlpolemeq1 15785 nconstwlpolem0 15794 |
| Copyright terms: Public domain | W3C validator |