| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq2dv | Unicode version | ||
| Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| sumeq2dv.1 |
|
| Ref | Expression |
|---|---|
| sumeq2dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq2dv.1 |
. . 3
| |
| 2 | 1 | ralrimiva 2570 |
. 2
|
| 3 | 2 | sumeq2d 11532 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-seqfrec 10540 df-sumdc 11519 |
| This theorem is referenced by: sumeq2sdv 11535 2sumeq2dv 11536 sumeq12dv 11537 sumeq12rdv 11538 sumfct 11539 fsumf1o 11555 fisumss 11557 fsumsplit 11572 isummulc1 11592 isumdivapc 11593 isumge0 11595 sumsplitdc 11597 fsum2dlemstep 11599 fsumshftm 11610 fisum0diag2 11612 fsummulc1 11614 fsumdivapc 11615 fsumneg 11616 fsumsub 11617 fsum2mul 11618 telfsumo2 11632 fsumparts 11635 hashiun 11643 hash2iun 11644 hash2iun1dif1 11645 binomlem 11648 binom1p 11650 isum1p 11657 arisum 11663 trireciplem 11665 geosergap 11671 geo2sum 11679 mertenslemi1 11700 mertenslem2 11701 mertensabs 11702 efval2 11830 efaddlem 11839 fsumdvds 12007 phisum 12409 pcfac 12519 elply2 14971 elplyd 14977 plyaddlem1 14983 plymullem1 14984 plycjlemc 14996 plyrecj 14999 dvply1 15001 sgmval2 15220 fsumdvdsmul 15227 sgmppw 15228 1sgmprm 15230 perfectlem2 15236 lgsquadlem1 15318 lgsquadlem2 15319 cvgcmp2nlemabs 15676 redcwlpolemeq1 15698 nconstwlpolem0 15707 |
| Copyright terms: Public domain | W3C validator |