| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq2dv | Unicode version | ||
| Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| sumeq2dv.1 |
|
| Ref | Expression |
|---|---|
| sumeq2dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq2dv.1 |
. . 3
| |
| 2 | 1 | ralrimiva 2579 |
. 2
|
| 3 | 2 | sumeq2d 11711 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-recs 6393 df-frec 6479 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 df-fz 10133 df-seqfrec 10595 df-sumdc 11698 |
| This theorem is referenced by: sumeq2sdv 11714 2sumeq2dv 11715 sumeq12dv 11716 sumeq12rdv 11717 sumfct 11718 fsumf1o 11734 fisumss 11736 fsumsplit 11751 isummulc1 11771 isumdivapc 11772 isumge0 11774 sumsplitdc 11776 fsum2dlemstep 11778 fsumshftm 11789 fisum0diag2 11791 fsummulc1 11793 fsumdivapc 11794 fsumneg 11795 fsumsub 11796 fsum2mul 11797 telfsumo2 11811 fsumparts 11814 hashiun 11822 hash2iun 11823 hash2iun1dif1 11824 binomlem 11827 binom1p 11829 isum1p 11836 arisum 11842 trireciplem 11844 geosergap 11850 geo2sum 11858 mertenslemi1 11879 mertenslem2 11880 mertensabs 11881 efval2 12009 efaddlem 12018 fsumdvds 12186 phisum 12596 pcfac 12706 elply2 15240 elplyd 15246 plyaddlem1 15252 plymullem1 15253 plycjlemc 15265 plyrecj 15268 dvply1 15270 sgmval2 15489 fsumdvdsmul 15496 sgmppw 15497 1sgmprm 15499 perfectlem2 15505 lgsquadlem1 15587 lgsquadlem2 15588 cvgcmp2nlemabs 16008 redcwlpolemeq1 16030 nconstwlpolem0 16039 |
| Copyright terms: Public domain | W3C validator |