ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq2dv Unicode version

Theorem sumeq2dv 11879
Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypothesis
Ref Expression
sumeq2dv.1  |-  ( (
ph  /\  k  e.  A )  ->  B  =  C )
Assertion
Ref Expression
sumeq2dv  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  A  C )
Distinct variable groups:    A, k    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem sumeq2dv
StepHypRef Expression
1 sumeq2dv.1 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  =  C )
21ralrimiva 2603 . 2  |-  ( ph  ->  A. k  e.  A  B  =  C )
32sumeq2d 11878 1  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   sum_csu 11864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-seqfrec 10670  df-sumdc 11865
This theorem is referenced by:  sumeq2sdv  11881  2sumeq2dv  11882  sumeq12dv  11883  sumeq12rdv  11884  sumfct  11885  fsumf1o  11901  fisumss  11903  fsumsplit  11918  isummulc1  11938  isumdivapc  11939  isumge0  11941  sumsplitdc  11943  fsum2dlemstep  11945  fsumshftm  11956  fisum0diag2  11958  fsummulc1  11960  fsumdivapc  11961  fsumneg  11962  fsumsub  11963  fsum2mul  11964  telfsumo2  11978  fsumparts  11981  hashiun  11989  hash2iun  11990  hash2iun1dif1  11991  binomlem  11994  binom1p  11996  isum1p  12003  arisum  12009  trireciplem  12011  geosergap  12017  geo2sum  12025  mertenslemi1  12046  mertenslem2  12047  mertensabs  12048  efval2  12176  efaddlem  12185  fsumdvds  12353  phisum  12763  pcfac  12873  elply2  15409  elplyd  15415  plyaddlem1  15421  plymullem1  15422  plycjlemc  15434  plyrecj  15437  dvply1  15439  sgmval2  15658  fsumdvdsmul  15665  sgmppw  15666  1sgmprm  15668  perfectlem2  15674  lgsquadlem1  15756  lgsquadlem2  15757  cvgcmp2nlemabs  16400  redcwlpolemeq1  16422  nconstwlpolem0  16431
  Copyright terms: Public domain W3C validator