Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sumeq2dv | Unicode version |
Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
sumeq2dv.1 |
Ref | Expression |
---|---|
sumeq2dv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq2dv.1 | . . 3 | |
2 | 1 | ralrimiva 2548 | . 2 |
3 | 2 | sumeq2d 11343 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wcel 2146 csu 11329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-recs 6296 df-frec 6382 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8893 df-n0 9150 df-z 9227 df-uz 9502 df-fz 9980 df-seqfrec 10416 df-sumdc 11330 |
This theorem is referenced by: sumeq2sdv 11346 2sumeq2dv 11347 sumeq12dv 11348 sumeq12rdv 11349 sumfct 11350 fsumf1o 11366 fisumss 11368 fsumsplit 11383 isummulc1 11403 isumdivapc 11404 isumge0 11406 sumsplitdc 11408 fsum2dlemstep 11410 fsumshftm 11421 fisum0diag2 11423 fsummulc1 11425 fsumdivapc 11426 fsumneg 11427 fsumsub 11428 fsum2mul 11429 telfsumo2 11443 fsumparts 11446 hashiun 11454 hash2iun 11455 hash2iun1dif1 11456 binomlem 11459 binom1p 11461 isum1p 11468 arisum 11474 trireciplem 11476 geosergap 11482 geo2sum 11490 mertenslemi1 11511 mertenslem2 11512 mertensabs 11513 efval2 11641 efaddlem 11650 phisum 12207 pcfac 12315 cvgcmp2nlemabs 14341 redcwlpolemeq1 14363 nconstwlpolem0 14371 |
Copyright terms: Public domain | W3C validator |