ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq2dv Unicode version

Theorem sumeq2dv 11394
Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypothesis
Ref Expression
sumeq2dv.1  |-  ( (
ph  /\  k  e.  A )  ->  B  =  C )
Assertion
Ref Expression
sumeq2dv  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  A  C )
Distinct variable groups:    A, k    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem sumeq2dv
StepHypRef Expression
1 sumeq2dv.1 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  =  C )
21ralrimiva 2563 . 2  |-  ( ph  ->  A. k  e.  A  B  =  C )
32sumeq2d 11393 1  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   sum_csu 11379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-0id 7937  ax-rnegex 7938  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-recs 6324  df-frec 6410  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-inn 8938  df-n0 9195  df-z 9272  df-uz 9547  df-fz 10027  df-seqfrec 10464  df-sumdc 11380
This theorem is referenced by:  sumeq2sdv  11396  2sumeq2dv  11397  sumeq12dv  11398  sumeq12rdv  11399  sumfct  11400  fsumf1o  11416  fisumss  11418  fsumsplit  11433  isummulc1  11453  isumdivapc  11454  isumge0  11456  sumsplitdc  11458  fsum2dlemstep  11460  fsumshftm  11471  fisum0diag2  11473  fsummulc1  11475  fsumdivapc  11476  fsumneg  11477  fsumsub  11478  fsum2mul  11479  telfsumo2  11493  fsumparts  11496  hashiun  11504  hash2iun  11505  hash2iun1dif1  11506  binomlem  11509  binom1p  11511  isum1p  11518  arisum  11524  trireciplem  11526  geosergap  11532  geo2sum  11540  mertenslemi1  11561  mertenslem2  11562  mertensabs  11563  efval2  11691  efaddlem  11700  phisum  12258  pcfac  12366  cvgcmp2nlemabs  15178  redcwlpolemeq1  15200  nconstwlpolem0  15209
  Copyright terms: Public domain W3C validator