ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq2dv Unicode version

Theorem sumeq2dv 11389
Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypothesis
Ref Expression
sumeq2dv.1  |-  ( (
ph  /\  k  e.  A )  ->  B  =  C )
Assertion
Ref Expression
sumeq2dv  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  A  C )
Distinct variable groups:    A, k    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem sumeq2dv
StepHypRef Expression
1 sumeq2dv.1 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  =  C )
21ralrimiva 2560 . 2  |-  ( ph  ->  A. k  e.  A  B  =  C )
32sumeq2d 11388 1  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   sum_csu 11374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-recs 6319  df-frec 6405  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-inn 8933  df-n0 9190  df-z 9267  df-uz 9542  df-fz 10022  df-seqfrec 10459  df-sumdc 11375
This theorem is referenced by:  sumeq2sdv  11391  2sumeq2dv  11392  sumeq12dv  11393  sumeq12rdv  11394  sumfct  11395  fsumf1o  11411  fisumss  11413  fsumsplit  11428  isummulc1  11448  isumdivapc  11449  isumge0  11451  sumsplitdc  11453  fsum2dlemstep  11455  fsumshftm  11466  fisum0diag2  11468  fsummulc1  11470  fsumdivapc  11471  fsumneg  11472  fsumsub  11473  fsum2mul  11474  telfsumo2  11488  fsumparts  11491  hashiun  11499  hash2iun  11500  hash2iun1dif1  11501  binomlem  11504  binom1p  11506  isum1p  11513  arisum  11519  trireciplem  11521  geosergap  11527  geo2sum  11535  mertenslemi1  11556  mertenslem2  11557  mertensabs  11558  efval2  11686  efaddlem  11695  phisum  12253  pcfac  12361  cvgcmp2nlemabs  15021  redcwlpolemeq1  15043  nconstwlpolem0  15052
  Copyright terms: Public domain W3C validator