ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wrdupgren Unicode version

Theorem wrdupgren 15881
Description: The property of being an undirected pseudograph, expressing the edges as "words". (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v  |-  V  =  (Vtx `  G )
isupgr.e  |-  E  =  (iEdg `  G )
Assertion
Ref Expression
wrdupgren  |-  ( ( G  e.  U  /\  E  e. Word  X )  ->  ( G  e. UPGraph  <->  E  e. Word  { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } ) )
Distinct variable groups:    x, G    x, V
Allowed substitution hints:    U( x)    E( x)    X( x)

Proof of Theorem wrdupgren
StepHypRef Expression
1 isupgr.v . . . 4  |-  V  =  (Vtx `  G )
2 isupgr.e . . . 4  |-  E  =  (iEdg `  G )
31, 2isupgren 15880 . . 3  |-  ( G  e.  U  ->  ( G  e. UPGraph  <->  E : dom  E --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } ) )
43adantr 276 . 2  |-  ( ( G  e.  U  /\  E  e. Word  X )  ->  ( G  e. UPGraph  <->  E : dom  E --> { x  e. 
~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } ) )
5 wrdf 11064 . . . . 5  |-  ( E  e. Word  X  ->  E : ( 0..^ ( `  E ) ) --> X )
65adantl 277 . . . 4  |-  ( ( G  e.  U  /\  E  e. Word  X )  ->  E : ( 0..^ ( `  E )
) --> X )
76fdmd 5476 . . 3  |-  ( ( G  e.  U  /\  E  e. Word  X )  ->  dom  E  =  ( 0..^ ( `  E
) ) )
87feq2d 5457 . 2  |-  ( ( G  e.  U  /\  E  e. Word  X )  ->  ( E : dom  E --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  <->  E :
( 0..^ ( `  E
) ) --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } ) )
9 simpr 110 . . . . 5  |-  ( ( ( G  e.  U  /\  E  e. Word  X )  /\  E : ( 0..^ ( `  E
) ) --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } )  ->  E :
( 0..^ ( `  E
) ) --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } )
10 lencl 11062 . . . . . 6  |-  ( E  e. Word  X  ->  ( `  E )  e.  NN0 )
1110ad2antlr 489 . . . . 5  |-  ( ( ( G  e.  U  /\  E  e. Word  X )  /\  E : ( 0..^ ( `  E
) ) --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } )  ->  ( `  E
)  e.  NN0 )
12 iswrdinn0 11063 . . . . 5  |-  ( ( E : ( 0..^ ( `  E )
) --> { x  e. 
~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  /\  ( `  E
)  e.  NN0 )  ->  E  e. Word  { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } )
139, 11, 12syl2anc 411 . . . 4  |-  ( ( ( G  e.  U  /\  E  e. Word  X )  /\  E : ( 0..^ ( `  E
) ) --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } )  ->  E  e. Word  { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } )
1413ex 115 . . 3  |-  ( ( G  e.  U  /\  E  e. Word  X )  ->  ( E : ( 0..^ ( `  E
) ) --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  ->  E  e. Word  { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } ) )
15 wrdf 11064 . . 3  |-  ( E  e. Word  { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  ->  E : ( 0..^ ( `  E ) ) --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } )
1614, 15impbid1 142 . 2  |-  ( ( G  e.  U  /\  E  e. Word  X )  ->  ( E : ( 0..^ ( `  E
) ) --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  <-> 
E  e. Word  { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } ) )
174, 8, 163bitrd 214 1  |-  ( ( G  e.  U  /\  E  e. Word  X )  ->  ( G  e. UPGraph  <->  E  e. Word  { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   {crab 2512   ~Pcpw 3649   class class class wbr 4082   dom cdm 4716   -->wf 5310   ` cfv 5314  (class class class)co 5994   1oc1o 6545   2oc2o 6546    ~~ cen 6875   0cc0 7987   NN0cn0 9357  ..^cfzo 10326  ♯chash 10984  Word cword 11058  Vtxcvtx 15798  iEdgciedg 15799  UPGraphcupgr 15876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-z 9435  df-dec 9567  df-uz 9711  df-fz 10193  df-fzo 10327  df-ihash 10985  df-word 11059  df-ndx 13021  df-slot 13022  df-base 13024  df-edgf 15791  df-vtx 15800  df-iedg 15801  df-upgren 15878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator