| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wrdupgren | GIF version | ||
| Description: The property of being an undirected pseudograph, expressing the edges as "words". (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| Ref | Expression |
|---|---|
| isupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isupgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| wrdupgren | ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) → (𝐺 ∈ UPGraph ↔ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isupgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | isupgr.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | isupgren 15880 | . . 3 ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 4 | 3 | adantr 276 | . 2 ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 5 | wrdf 11064 | . . . . 5 ⊢ (𝐸 ∈ Word 𝑋 → 𝐸:(0..^(♯‘𝐸))⟶𝑋) | |
| 6 | 5 | adantl 277 | . . . 4 ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) → 𝐸:(0..^(♯‘𝐸))⟶𝑋) |
| 7 | 6 | fdmd 5476 | . . 3 ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) → dom 𝐸 = (0..^(♯‘𝐸))) |
| 8 | 7 | feq2d 5457 | . 2 ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) → (𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ↔ 𝐸:(0..^(♯‘𝐸))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 9 | simpr 110 | . . . . 5 ⊢ (((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) ∧ 𝐸:(0..^(♯‘𝐸))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) → 𝐸:(0..^(♯‘𝐸))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) | |
| 10 | lencl 11062 | . . . . . 6 ⊢ (𝐸 ∈ Word 𝑋 → (♯‘𝐸) ∈ ℕ0) | |
| 11 | 10 | ad2antlr 489 | . . . . 5 ⊢ (((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) ∧ 𝐸:(0..^(♯‘𝐸))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) → (♯‘𝐸) ∈ ℕ0) |
| 12 | iswrdinn0 11063 | . . . . 5 ⊢ ((𝐸:(0..^(♯‘𝐸))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧ (♯‘𝐸) ∈ ℕ0) → 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) | |
| 13 | 9, 11, 12 | syl2anc 411 | . . . 4 ⊢ (((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) ∧ 𝐸:(0..^(♯‘𝐸))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) → 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 14 | 13 | ex 115 | . . 3 ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) → (𝐸:(0..^(♯‘𝐸))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} → 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 15 | wrdf 11064 | . . 3 ⊢ (𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} → 𝐸:(0..^(♯‘𝐸))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) | |
| 16 | 14, 15 | impbid1 142 | . 2 ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) → (𝐸:(0..^(♯‘𝐸))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ↔ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 17 | 4, 8, 16 | 3bitrd 214 | 1 ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) → (𝐺 ∈ UPGraph ↔ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 {crab 2512 𝒫 cpw 3649 class class class wbr 4082 dom cdm 4716 ⟶wf 5310 ‘cfv 5314 (class class class)co 5994 1oc1o 6545 2oc2o 6546 ≈ cen 6875 0cc0 7987 ℕ0cn0 9357 ..^cfzo 10326 ♯chash 10984 Word cword 11058 Vtxcvtx 15798 iEdgciedg 15799 UPGraphcupgr 15876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-1o 6552 df-er 6670 df-en 6878 df-dom 6879 df-fin 6880 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-z 9435 df-dec 9567 df-uz 9711 df-fz 10193 df-fzo 10327 df-ihash 10985 df-word 11059 df-ndx 13021 df-slot 13022 df-base 13024 df-edgf 15791 df-vtx 15800 df-iedg 15801 df-upgren 15878 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |