ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znege1 Unicode version

Theorem znege1 12371
Description: The absolute value of the difference between two unequal integers is at least one. (Contributed by Jim Kingdon, 31-Jan-2022.)
Assertion
Ref Expression
znege1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  ->  1  <_  ( abs `  ( A  -  B )
) )

Proof of Theorem znege1
StepHypRef Expression
1 zltp1le 9397 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  ( A  +  1 )  <_  B ) )
213adant3 1019 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  ->  ( A  <  B  <->  ( A  +  1 )  <_  B ) )
32biimpa 296 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
( A  +  1 )  <_  B )
4 simpl1 1002 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  A  e.  ZZ )
54zred 9465 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  A  e.  RR )
6 1red 8058 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
1  e.  RR )
7 simpl2 1003 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  B  e.  ZZ )
87zred 9465 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  B  e.  RR )
95, 6, 8leaddsub2d 8591 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
( ( A  + 
1 )  <_  B  <->  1  <_  ( B  -  A ) ) )
103, 9mpbid 147 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
1  <_  ( B  -  A ) )
11 simpr 110 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  A  <  B )
125, 8, 11ltled 8162 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  A  <_  B )
135, 8, 12abssuble0d 11359 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
( abs `  ( A  -  B )
)  =  ( B  -  A ) )
1410, 13breqtrrd 4062 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
1  <_  ( abs `  ( A  -  B
) ) )
15 simpr 110 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  =  B )  ->  A  =  B )
16 simpl3 1004 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  =  B )  ->  A  =/=  B )
1715, 16pm2.21ddne 2450 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  =  B )  ->  1  <_  ( abs `  ( A  -  B
) ) )
18 simpr 110 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  B  <  A )
19 simpl2 1003 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  B  e.  ZZ )
20 simpl1 1002 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  A  e.  ZZ )
21 zltp1le 9397 . . . . . 6  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( B  <  A  <->  ( B  +  1 )  <_  A ) )
2219, 20, 21syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
( B  <  A  <->  ( B  +  1 )  <_  A ) )
2318, 22mpbid 147 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
( B  +  1 )  <_  A )
2419zred 9465 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  B  e.  RR )
25 1red 8058 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
1  e.  RR )
2620zred 9465 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  A  e.  RR )
2724, 25, 26leaddsub2d 8591 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
( ( B  + 
1 )  <_  A  <->  1  <_  ( A  -  B ) ) )
2823, 27mpbid 147 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
1  <_  ( A  -  B ) )
2924, 26, 18ltled 8162 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  B  <_  A )
3024, 26, 29abssubge0d 11358 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
( abs `  ( A  -  B )
)  =  ( A  -  B ) )
3128, 30breqtrrd 4062 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
1  <_  ( abs `  ( A  -  B
) ) )
32 ztri3or 9386 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
33323adant3 1019 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
3414, 17, 31, 33mpjao3dan 1318 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  ->  1  <_  ( abs `  ( A  -  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   1c1 7897    + caddc 7899    < clt 8078    <_ cle 8079    - cmin 8214   ZZcz 9343   abscabs 11179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator