ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znege1 Unicode version

Theorem znege1 12700
Description: The absolute value of the difference between two unequal integers is at least one. (Contributed by Jim Kingdon, 31-Jan-2022.)
Assertion
Ref Expression
znege1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  ->  1  <_  ( abs `  ( A  -  B )
) )

Proof of Theorem znege1
StepHypRef Expression
1 zltp1le 9501 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  ( A  +  1 )  <_  B ) )
213adant3 1041 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  ->  ( A  <  B  <->  ( A  +  1 )  <_  B ) )
32biimpa 296 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
( A  +  1 )  <_  B )
4 simpl1 1024 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  A  e.  ZZ )
54zred 9569 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  A  e.  RR )
6 1red 8161 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
1  e.  RR )
7 simpl2 1025 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  B  e.  ZZ )
87zred 9569 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  B  e.  RR )
95, 6, 8leaddsub2d 8694 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
( ( A  + 
1 )  <_  B  <->  1  <_  ( B  -  A ) ) )
103, 9mpbid 147 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
1  <_  ( B  -  A ) )
11 simpr 110 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  A  <  B )
125, 8, 11ltled 8265 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  A  <_  B )
135, 8, 12abssuble0d 11688 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
( abs `  ( A  -  B )
)  =  ( B  -  A ) )
1410, 13breqtrrd 4111 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
1  <_  ( abs `  ( A  -  B
) ) )
15 simpr 110 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  =  B )  ->  A  =  B )
16 simpl3 1026 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  =  B )  ->  A  =/=  B )
1715, 16pm2.21ddne 2483 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  =  B )  ->  1  <_  ( abs `  ( A  -  B
) ) )
18 simpr 110 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  B  <  A )
19 simpl2 1025 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  B  e.  ZZ )
20 simpl1 1024 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  A  e.  ZZ )
21 zltp1le 9501 . . . . . 6  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( B  <  A  <->  ( B  +  1 )  <_  A ) )
2219, 20, 21syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
( B  <  A  <->  ( B  +  1 )  <_  A ) )
2318, 22mpbid 147 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
( B  +  1 )  <_  A )
2419zred 9569 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  B  e.  RR )
25 1red 8161 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
1  e.  RR )
2620zred 9569 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  A  e.  RR )
2724, 25, 26leaddsub2d 8694 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
( ( B  + 
1 )  <_  A  <->  1  <_  ( A  -  B ) ) )
2823, 27mpbid 147 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
1  <_  ( A  -  B ) )
2924, 26, 18ltled 8265 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  B  <_  A )
3024, 26, 29abssubge0d 11687 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
( abs `  ( A  -  B )
)  =  ( A  -  B ) )
3128, 30breqtrrd 4111 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
1  <_  ( abs `  ( A  -  B
) ) )
32 ztri3or 9489 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
33323adant3 1041 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
3414, 17, 31, 33mpjao3dan 1341 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  ->  1  <_  ( abs `  ( A  -  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 1001    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182    - cmin 8317   ZZcz 9446   abscabs 11508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator