ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znege1 Unicode version

Theorem znege1 12346
Description: The absolute value of the difference between two unequal integers is at least one. (Contributed by Jim Kingdon, 31-Jan-2022.)
Assertion
Ref Expression
znege1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  ->  1  <_  ( abs `  ( A  -  B )
) )

Proof of Theorem znege1
StepHypRef Expression
1 zltp1le 9380 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  ( A  +  1 )  <_  B ) )
213adant3 1019 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  ->  ( A  <  B  <->  ( A  +  1 )  <_  B ) )
32biimpa 296 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
( A  +  1 )  <_  B )
4 simpl1 1002 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  A  e.  ZZ )
54zred 9448 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  A  e.  RR )
6 1red 8041 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
1  e.  RR )
7 simpl2 1003 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  B  e.  ZZ )
87zred 9448 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  B  e.  RR )
95, 6, 8leaddsub2d 8574 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
( ( A  + 
1 )  <_  B  <->  1  <_  ( B  -  A ) ) )
103, 9mpbid 147 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
1  <_  ( B  -  A ) )
11 simpr 110 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  A  <  B )
125, 8, 11ltled 8145 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  A  <_  B )
135, 8, 12abssuble0d 11342 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
( abs `  ( A  -  B )
)  =  ( B  -  A ) )
1410, 13breqtrrd 4061 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
1  <_  ( abs `  ( A  -  B
) ) )
15 simpr 110 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  =  B )  ->  A  =  B )
16 simpl3 1004 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  =  B )  ->  A  =/=  B )
1715, 16pm2.21ddne 2450 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  =  B )  ->  1  <_  ( abs `  ( A  -  B
) ) )
18 simpr 110 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  B  <  A )
19 simpl2 1003 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  B  e.  ZZ )
20 simpl1 1002 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  A  e.  ZZ )
21 zltp1le 9380 . . . . . 6  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( B  <  A  <->  ( B  +  1 )  <_  A ) )
2219, 20, 21syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
( B  <  A  <->  ( B  +  1 )  <_  A ) )
2318, 22mpbid 147 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
( B  +  1 )  <_  A )
2419zred 9448 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  B  e.  RR )
25 1red 8041 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
1  e.  RR )
2620zred 9448 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  A  e.  RR )
2724, 25, 26leaddsub2d 8574 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
( ( B  + 
1 )  <_  A  <->  1  <_  ( A  -  B ) ) )
2823, 27mpbid 147 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
1  <_  ( A  -  B ) )
2924, 26, 18ltled 8145 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  B  <_  A )
3024, 26, 29abssubge0d 11341 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
( abs `  ( A  -  B )
)  =  ( A  -  B ) )
3128, 30breqtrrd 4061 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
1  <_  ( abs `  ( A  -  B
) ) )
32 ztri3or 9369 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
33323adant3 1019 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
3414, 17, 31, 33mpjao3dan 1318 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  ->  1  <_  ( abs `  ( A  -  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   1c1 7880    + caddc 7882    < clt 8061    <_ cle 8062    - cmin 8197   ZZcz 9326   abscabs 11162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator