ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zrhpropd GIF version

Theorem zrhpropd 14555
Description: The ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
zrhpropd.1 (𝜑𝐵 = (Base‘𝐾))
zrhpropd.2 (𝜑𝐵 = (Base‘𝐿))
zrhpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
zrhpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
zrhpropd (𝜑 → (ℤRHom‘𝐾) = (ℤRHom‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem zrhpropd
StepHypRef Expression
1 eqidd 2210 . . . 4 (𝜑 → (Base‘ℤring) = (Base‘ℤring))
2 zrhpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
3 zrhpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
4 eqidd 2210 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘ℤring) ∧ 𝑦 ∈ (Base‘ℤring))) → (𝑥(+g‘ℤring)𝑦) = (𝑥(+g‘ℤring)𝑦))
5 zrhpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
6 eqidd 2210 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘ℤring) ∧ 𝑦 ∈ (Base‘ℤring))) → (𝑥(.r‘ℤring)𝑦) = (𝑥(.r‘ℤring)𝑦))
7 zrhpropd.4 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
81, 2, 1, 3, 4, 5, 6, 7rhmpropd 14183 . . 3 (𝜑 → (ℤring RingHom 𝐾) = (ℤring RingHom 𝐿))
98unieqd 3878 . 2 (𝜑 (ℤring RingHom 𝐾) = (ℤring RingHom 𝐿))
10 eqid 2209 . . 3 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
1110zrhval 14546 . 2 (ℤRHom‘𝐾) = (ℤring RingHom 𝐾)
12 eqid 2209 . . 3 (ℤRHom‘𝐿) = (ℤRHom‘𝐿)
1312zrhval 14546 . 2 (ℤRHom‘𝐿) = (ℤring RingHom 𝐿)
149, 11, 133eqtr4g 2267 1 (𝜑 → (ℤRHom‘𝐾) = (ℤRHom‘𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180   cuni 3867  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  .rcmulr 13077   RingHom crh 14079  ringczring 14519  ℤRHomczrh 14540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-rp 9818  df-fz 10173  df-cj 11319  df-abs 11476  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-starv 13091  df-tset 13095  df-ple 13096  df-ds 13098  df-unif 13099  df-0g 13257  df-topgen 13259  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-mhm 13458  df-grp 13502  df-minusg 13503  df-subg 13673  df-ghm 13744  df-cmn 13789  df-mgp 13850  df-ur 13889  df-ring 13927  df-cring 13928  df-rhm 14081  df-subrg 14148  df-bl 14475  df-mopn 14476  df-fg 14478  df-metu 14479  df-cnfld 14486  df-zring 14520  df-zrh 14543
This theorem is referenced by:  znzrh  14572
  Copyright terms: Public domain W3C validator