ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zrhpropd GIF version

Theorem zrhpropd 14158
Description: The ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
zrhpropd.1 (𝜑𝐵 = (Base‘𝐾))
zrhpropd.2 (𝜑𝐵 = (Base‘𝐿))
zrhpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
zrhpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
zrhpropd (𝜑 → (ℤRHom‘𝐾) = (ℤRHom‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem zrhpropd
StepHypRef Expression
1 eqidd 2197 . . . 4 (𝜑 → (Base‘ℤring) = (Base‘ℤring))
2 zrhpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
3 zrhpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
4 eqidd 2197 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘ℤring) ∧ 𝑦 ∈ (Base‘ℤring))) → (𝑥(+g‘ℤring)𝑦) = (𝑥(+g‘ℤring)𝑦))
5 zrhpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
6 eqidd 2197 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘ℤring) ∧ 𝑦 ∈ (Base‘ℤring))) → (𝑥(.r‘ℤring)𝑦) = (𝑥(.r‘ℤring)𝑦))
7 zrhpropd.4 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
81, 2, 1, 3, 4, 5, 6, 7rhmpropd 13786 . . 3 (𝜑 → (ℤring RingHom 𝐾) = (ℤring RingHom 𝐿))
98unieqd 3850 . 2 (𝜑 (ℤring RingHom 𝐾) = (ℤring RingHom 𝐿))
10 eqid 2196 . . 3 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
1110zrhval 14149 . 2 (ℤRHom‘𝐾) = (ℤring RingHom 𝐾)
12 eqid 2196 . . 3 (ℤRHom‘𝐿) = (ℤRHom‘𝐿)
1312zrhval 14149 . 2 (ℤRHom‘𝐿) = (ℤring RingHom 𝐿)
149, 11, 133eqtr4g 2254 1 (𝜑 → (ℤRHom‘𝐾) = (ℤRHom‘𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167   cuni 3839  cfv 5258  (class class class)co 5922  Basecbs 12654  +gcplusg 12731  .rcmulr 12732   RingHom crh 13682  ringczring 14122  ℤRHomczrh 14143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-addf 7999  ax-mulf 8000
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-5 9049  df-6 9050  df-7 9051  df-8 9052  df-9 9053  df-n0 9247  df-z 9324  df-dec 9455  df-uz 9599  df-rp 9726  df-fz 10081  df-cj 10992  df-abs 11149  df-struct 12656  df-ndx 12657  df-slot 12658  df-base 12660  df-sets 12661  df-iress 12662  df-plusg 12744  df-mulr 12745  df-starv 12746  df-tset 12750  df-ple 12751  df-ds 12753  df-unif 12754  df-0g 12905  df-topgen 12907  df-mgm 12975  df-sgrp 13021  df-mnd 13034  df-mhm 13067  df-grp 13111  df-minusg 13112  df-subg 13276  df-ghm 13347  df-cmn 13392  df-mgp 13453  df-ur 13492  df-ring 13530  df-cring 13531  df-rhm 13684  df-subrg 13751  df-bl 14078  df-mopn 14079  df-fg 14081  df-metu 14082  df-cnfld 14089  df-zring 14123  df-zrh 14146
This theorem is referenced by:  znzrh  14175
  Copyright terms: Public domain W3C validator