![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zrhpropd | GIF version |
Description: The ℤ ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
zrhpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
zrhpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
zrhpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
zrhpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
zrhpropd | ⊢ (𝜑 → (ℤRHom‘𝐾) = (ℤRHom‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2197 | . . . 4 ⊢ (𝜑 → (Base‘ℤring) = (Base‘ℤring)) | |
2 | zrhpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
3 | zrhpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
4 | eqidd 2197 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘ℤring) ∧ 𝑦 ∈ (Base‘ℤring))) → (𝑥(+g‘ℤring)𝑦) = (𝑥(+g‘ℤring)𝑦)) | |
5 | zrhpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
6 | eqidd 2197 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘ℤring) ∧ 𝑦 ∈ (Base‘ℤring))) → (𝑥(.r‘ℤring)𝑦) = (𝑥(.r‘ℤring)𝑦)) | |
7 | zrhpropd.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
8 | 1, 2, 1, 3, 4, 5, 6, 7 | rhmpropd 13786 | . . 3 ⊢ (𝜑 → (ℤring RingHom 𝐾) = (ℤring RingHom 𝐿)) |
9 | 8 | unieqd 3850 | . 2 ⊢ (𝜑 → ∪ (ℤring RingHom 𝐾) = ∪ (ℤring RingHom 𝐿)) |
10 | eqid 2196 | . . 3 ⊢ (ℤRHom‘𝐾) = (ℤRHom‘𝐾) | |
11 | 10 | zrhval 14149 | . 2 ⊢ (ℤRHom‘𝐾) = ∪ (ℤring RingHom 𝐾) |
12 | eqid 2196 | . . 3 ⊢ (ℤRHom‘𝐿) = (ℤRHom‘𝐿) | |
13 | 12 | zrhval 14149 | . 2 ⊢ (ℤRHom‘𝐿) = ∪ (ℤring RingHom 𝐿) |
14 | 9, 11, 13 | 3eqtr4g 2254 | 1 ⊢ (𝜑 → (ℤRHom‘𝐾) = (ℤRHom‘𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∪ cuni 3839 ‘cfv 5258 (class class class)co 5922 Basecbs 12654 +gcplusg 12731 .rcmulr 12732 RingHom crh 13682 ℤringczring 14122 ℤRHomczrh 14143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 ax-addf 7999 ax-mulf 8000 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-reap 8599 df-inn 8988 df-2 9046 df-3 9047 df-4 9048 df-5 9049 df-6 9050 df-7 9051 df-8 9052 df-9 9053 df-n0 9247 df-z 9324 df-dec 9455 df-uz 9599 df-rp 9726 df-fz 10081 df-cj 10992 df-abs 11149 df-struct 12656 df-ndx 12657 df-slot 12658 df-base 12660 df-sets 12661 df-iress 12662 df-plusg 12744 df-mulr 12745 df-starv 12746 df-tset 12750 df-ple 12751 df-ds 12753 df-unif 12754 df-0g 12905 df-topgen 12907 df-mgm 12975 df-sgrp 13021 df-mnd 13034 df-mhm 13067 df-grp 13111 df-minusg 13112 df-subg 13276 df-ghm 13347 df-cmn 13392 df-mgp 13453 df-ur 13492 df-ring 13530 df-cring 13531 df-rhm 13684 df-subrg 13751 df-bl 14078 df-mopn 14079 df-fg 14081 df-metu 14082 df-cnfld 14089 df-zring 14123 df-zrh 14146 |
This theorem is referenced by: znzrh 14175 |
Copyright terms: Public domain | W3C validator |